Spaces:
Running
Running
File size: 15,015 Bytes
11d9dfb 5e2e4e3 11d9dfb 5e2e4e3 11d9dfb 5e2e4e3 11d9dfb efe948f 11d9dfb efe948f 11d9dfb efe948f 11d9dfb efe948f 11d9dfb efe948f 11d9dfb 5e2e4e3 11d9dfb 5e2e4e3 11d9dfb 5e2e4e3 11d9dfb 046f392 11d9dfb 046f392 11d9dfb 046f392 11d9dfb 046f392 11d9dfb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
"""
Reusable UI components for the Gradio interface.
"""
import gradio as gr
import json
import time
from typing import Any, Dict, List, Optional, Tuple, Callable
import pandas as pd
import plotly.graph_objects as go
import plotly.express as px
from .themes import create_info_card, create_status_indicator, format_search_result, create_progress_bar
def create_header() -> gr.HTML:
"""Create the header section."""
header_html = """
<div class="header-container">
<h1 class="header-title">π€ Intelligent Document Assistant</h1>
<p class="header-description">
<strong>Transform your documents into intelligent conversations!</strong>
Upload PDFs, DOCX, and TXT files to create a smart knowledge base.
Chat naturally, search semantically, and get AI-powered insights from your content.
</p>
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); padding: 1rem; border-radius: 12px; margin: 1rem 0; color: white; text-align: center;">
<p style="margin: 0; font-size: 1.1rem;">
β¨ <strong>New Feature:</strong> Conversational AI with hybrid search capabilities |
π <strong>Multi-modal responses:</strong> Chat, RAG, and Hybrid modes |
π <strong>Advanced analytics:</strong> Track usage and optimize performance
</p>
</div>
</div>
"""
return gr.HTML(header_html)
def create_file_upload_section() -> Tuple[gr.File, gr.HTML, gr.Button]:
"""Create file upload section."""
file_upload = gr.File(
label="Upload Documents",
file_types=[".pdf", ".docx", ".txt"],
file_count="multiple",
interactive=True,
height=150
)
upload_status = gr.HTML(
create_status_indicator("ready", "Ready to upload documents"),
visible=True
)
# Make the button more prominent by putting it in a separate row
with gr.Row():
with gr.Column(scale=1):
gr.HTML("") # Empty space
with gr.Column(scale=2):
upload_button = gr.Button(
"π Process Documents",
variant="primary",
size="lg",
interactive=False,
elem_classes=["process-button"]
)
with gr.Column(scale=1):
gr.HTML("") # Empty space
return file_upload, upload_status, upload_button
def create_search_interface() -> Tuple[gr.Textbox, gr.Row, gr.Button]:
"""Create search interface components."""
search_query = gr.Textbox(
label="Search Query",
placeholder="Ask a question about your documents...",
lines=2,
max_lines=4,
interactive=True,
scale=4
)
with gr.Row() as search_controls:
with gr.Column(scale=1):
search_mode = gr.Dropdown(
choices=["hybrid", "vector", "bm25"],
value="hybrid",
label="Search Mode",
interactive=True
)
with gr.Column(scale=1):
num_results = gr.Slider(
minimum=1,
maximum=20,
value=10,
step=1,
label="Number of Results",
interactive=True
)
with gr.Column(scale=1):
enable_reranking = gr.Checkbox(
label="Enable Re-ranking",
value=True,
interactive=True
)
search_button = gr.Button(
"Search",
variant="primary",
size="lg",
interactive=False
)
return search_query, search_controls, search_button, search_mode, num_results, enable_reranking
def create_results_display() -> Tuple[gr.HTML, gr.JSON, gr.HTML]:
"""Create results display components."""
results_html = gr.HTML(
"<div style='text-align: center; color: #6b7280; padding: 2rem;'>No search results yet. Upload documents and try searching!</div>",
visible=True
)
results_json = gr.JSON(
value={}, # Initialize with empty dict to prevent parsing errors
label="Detailed Results (JSON)",
visible=False
)
search_stats = gr.HTML(visible=False)
return results_html, results_json, search_stats
def create_document_management() -> Tuple[gr.HTML, gr.Button, gr.Button]:
"""Create document management interface."""
document_list = gr.HTML(
"<div style='text-align: center; color: #6b7280; padding: 1rem;'>No documents uploaded yet.</div>"
)
with gr.Row():
refresh_docs_btn = gr.Button("Refresh List", variant="secondary")
clear_docs_btn = gr.Button("Clear All Documents", variant="stop")
return document_list, refresh_docs_btn, clear_docs_btn
def create_system_status() -> gr.HTML:
"""Create system status display."""
return gr.HTML(
create_status_indicator("loading", "Initializing system..."),
visible=True
)
def create_analytics_dashboard() -> Tuple[gr.HTML, gr.Plot, gr.Plot, gr.Dataframe]:
"""Create analytics dashboard components."""
# System overview cards
system_overview = gr.HTML(
"<div style='display: grid; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); gap: 1rem; margin-bottom: 2rem;'></div>"
)
# Query analytics chart
query_chart = gr.Plot(
label="Queries Over Time",
visible=False
)
# Search modes chart
search_modes_chart = gr.Plot(
label="Search Modes Distribution",
visible=False
)
# Recent activity table
activity_table = gr.Dataframe(
headers=["Timestamp", "Activity", "Details", "Status"],
label="Recent Activity",
visible=False
)
return system_overview, query_chart, search_modes_chart, activity_table
def format_document_list(documents: List[Dict[str, Any]]) -> str:
"""Format document list as HTML."""
if not documents:
return "<div style='text-align: center; color: #6b7280; padding: 1rem;'>No documents uploaded yet.</div>"
html_parts = ["<div style='space-y: 1rem;'>"]
for doc in documents:
filename = doc.get("filename", "Unknown")
chunk_count = doc.get("chunk_count", 0)
file_type = doc.get("file_type", "unknown").upper()
file_size = doc.get("file_size", 0)
# Format file size
if file_size > 1024 * 1024:
size_str = f"{file_size / (1024 * 1024):.1f} MB"
elif file_size > 1024:
size_str = f"{file_size / 1024:.1f} KB"
else:
size_str = f"{file_size} bytes"
doc_html = f"""
<div class="result-card" style="margin-bottom: 1rem;">
<div class="result-title">π {filename}</div>
<div class="result-metadata" style="margin-top: 0.5rem;">
<span class="metadata-tag">Type: {file_type}</span>
<span class="metadata-tag">Size: {size_str}</span>
<span class="metadata-tag">Chunks: {chunk_count}</span>
</div>
</div>
"""
html_parts.append(doc_html)
html_parts.append("</div>")
return "".join(html_parts)
def format_search_results(results: List[Dict[str, Any]], search_time: float, query: str) -> Tuple[str, str]:
"""Format search results as HTML and create search statistics."""
if not results:
results_html = """
<div style='text-align: center; color: #6b7280; padding: 2rem;'>
<div style='font-size: 1.5rem; margin-bottom: 1rem;'>π</div>
<div>No results found for your query.</div>
<div style='font-size: 0.875rem; margin-top: 0.5rem;'>Try different keywords or check your search settings.</div>
</div>
"""
stats_html = f"""
<div style='background: #fef3c7; border: 1px solid #f59e0b; border-radius: 8px; padding: 1rem; margin: 1rem 0;'>
<strong>Search completed</strong> in {search_time:.2f}s - No results found
</div>
"""
return results_html, stats_html
# Format results
results_parts = [f"<div style='margin-bottom: 1rem;'><h3 style='color: #374151;'>Search Results for: \"{query}\"</h3></div>"]
for i, result in enumerate(results, 1):
result_html = format_search_result(result, i)
results_parts.append(result_html)
results_html = "".join(results_parts)
# Create search statistics
avg_score = sum(r.get("scores", {}).get("final_score", 0) for r in results) / len(results)
stats_html = f"""
<div style='background: #d1fae5; border: 1px solid #10b981; border-radius: 8px; padding: 1rem; margin: 1rem 0;'>
<div style='display: grid; grid-template-columns: repeat(auto-fit, minmax(150px, 1fr)); gap: 1rem; text-align: center;'>
<div>
<div style='font-weight: 600; color: #065f46;'>{len(results)}</div>
<div style='font-size: 0.875rem; color: #047857;'>Results Found</div>
</div>
<div>
<div style='font-weight: 600; color: #065f46;'>{search_time:.2f}s</div>
<div style='font-size: 0.875rem; color: #047857;'>Search Time</div>
</div>
<div>
<div style='font-weight: 600; color: #065f46;'>{avg_score:.3f}</div>
<div style='font-size: 0.875rem; color: #047857;'>Avg Score</div>
</div>
</div>
</div>
"""
return results_html, stats_html
def create_analytics_charts(analytics_data: Dict[str, Any]) -> Tuple[go.Figure, go.Figure]:
"""Create analytics charts."""
system_data = analytics_data.get("system", {})
queries_data = analytics_data.get("queries_24h", {})
# Queries over time chart
queries_per_hour = queries_data.get("queries_per_hour", [])
hours = list(range(len(queries_per_hour)))
query_fig = go.Figure()
query_fig.add_trace(go.Scatter(
x=hours,
y=queries_per_hour,
mode='lines+markers',
name='Queries per Hour',
line=dict(color='#667eea', width=3),
marker=dict(size=8, color='#667eea')
))
query_fig.update_layout(
title="Queries Over Time (24 Hours)",
xaxis_title="Hours Ago",
yaxis_title="Number of Queries",
template="plotly_white",
height=300
)
# Search modes distribution
search_modes = queries_data.get("search_modes", {})
if search_modes:
modes = list(search_modes.keys())
counts = list(search_modes.values())
modes_fig = go.Figure(data=[
go.Pie(
labels=modes,
values=counts,
hole=0.3,
marker=dict(colors=['#667eea', '#8b5cf6', '#06b6d4'])
)
])
modes_fig.update_layout(
title="Search Modes Distribution",
template="plotly_white",
height=300
)
else:
modes_fig = go.Figure()
modes_fig.update_layout(
title="Search Modes Distribution",
template="plotly_white",
height=300,
annotations=[dict(text="No data available", showarrow=False)]
)
return query_fig, modes_fig
def format_system_overview(analytics_data: Dict[str, Any]) -> str:
"""Format system overview cards."""
system_data = analytics_data.get("system", {})
conversation_data = analytics_data.get("conversation", {})
cards_html = """
<div style='display: grid; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); gap: 1rem; margin-bottom: 2rem;'>
"""
# Total queries
total_queries = system_data.get("total_queries", 0)
cards_html += create_info_card("Total Queries", str(total_queries), "All-time search queries")
# Documents processed
total_docs = system_data.get("total_documents_processed", 0)
cards_html += create_info_card("Documents", str(total_docs), "Successfully processed")
# Conversation metrics (if available)
if conversation_data:
total_conversations = conversation_data.get("total_conversations", 0)
if total_conversations > 0:
cards_html += create_info_card("Conversations", str(total_conversations), "Chat sessions completed")
total_messages = conversation_data.get("total_messages", 0)
if total_messages > 0:
cards_html += create_info_card("Messages", str(total_messages), "Chat messages exchanged")
# Uptime
uptime_hours = system_data.get("uptime_hours", 0)
uptime_str = f"{uptime_hours:.1f}h" if uptime_hours < 24 else f"{uptime_hours/24:.1f}d"
cards_html += create_info_card("Uptime", uptime_str, "System running time")
# Active sessions
active_sessions = system_data.get("active_sessions", 0)
cards_html += create_info_card("Active Users", str(active_sessions), "Current sessions")
cards_html += "</div>"
return cards_html
def create_progress_callback() -> Callable:
"""Create a progress callback function for document processing."""
def progress_callback(message: str, progress: float) -> str:
return create_progress_bar(progress, message)
return progress_callback
def create_error_display(error_message: str) -> str:
"""Create error display HTML."""
return f"""
<div style='background: #ef4444; border: 1px solid #dc2626; border-radius: 8px; padding: 1rem; margin: 1rem 0; box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);'>
<div style='display: flex; align-items: center; gap: 0.5rem; color: #ffffff; font-weight: 700; margin-bottom: 0.5rem; text-shadow: 0 1px 2px rgba(0, 0, 0, 0.1);'>
<span>β οΈ</span>
<span>Error</span>
</div>
<div style='color: #ffffff; font-weight: 500; opacity: 0.95;'>{error_message}</div>
</div>
"""
def create_success_display(message: str) -> str:
"""Create success display HTML."""
return f"""
<div style='background: #10b981; border: 1px solid #059669; border-radius: 8px; padding: 1rem; margin: 1rem 0; box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);'>
<div style='display: flex; align-items: center; gap: 0.5rem; color: #ffffff; font-weight: 700; margin-bottom: 0.5rem; text-shadow: 0 1px 2px rgba(0, 0, 0, 0.1);'>
<span>β
</span>
<span>Success</span>
</div>
<div style='color: #ffffff; font-weight: 500; opacity: 0.95;'>{message}</div>
</div>
"""
def create_loading_display(message: str = "Processing...") -> str:
"""Create loading display HTML."""
return f"""
<div style='text-align: center; padding: 2rem;'>
<div class='loading-spinner' style='margin-bottom: 1rem;'></div>
<div style='color: #6b7280; font-weight: 500;'>{message}</div>
</div>
""" |