Spaces:
Running
Running
File size: 67,628 Bytes
11d9dfb c0310a8 046f392 9fb62ac 11d9dfb 046f392 11d9dfb 5e2e4e3 11d9dfb 5e2e4e3 11d9dfb c0310a8 5e2e4e3 c0310a8 5e2e4e3 11d9dfb 5e2e4e3 11d9dfb 5e2e4e3 11d9dfb 5e2e4e3 11d9dfb 5e2e4e3 11d9dfb 5e2e4e3 9fb62ac 11d9dfb 5e2e4e3 11d9dfb 5e2e4e3 11d9dfb 9fb62ac 11d9dfb 9fb62ac 11d9dfb 9fb62ac 11d9dfb 9fb62ac 11d9dfb 9fb62ac 11d9dfb 046f392 11d9dfb 046f392 11d9dfb 046f392 9fb62ac 046f392 9fb62ac 046f392 9fb62ac 11d9dfb 046f392 11d9dfb 046f392 9fb62ac 046f392 9fb62ac 046f392 9fb62ac 046f392 9fb62ac 046f392 11d9dfb 9fb62ac 11d9dfb 9fb62ac 11d9dfb 5e2e4e3 11d9dfb 5e2e4e3 11d9dfb 5e2e4e3 11d9dfb bdb85c2 11d9dfb bdb85c2 11d9dfb 5e2e4e3 11d9dfb 5e2e4e3 11d9dfb 5e2e4e3 11d9dfb 5e2e4e3 11d9dfb 5e2e4e3 11d9dfb 5e2e4e3 11d9dfb 5e2e4e3 11d9dfb 50c07a8 11d9dfb 5e2e4e3 11d9dfb 5e2e4e3 11d9dfb 50c07a8 11d9dfb 50c07a8 11d9dfb 50c07a8 11d9dfb 5e2e4e3 0651996 11d9dfb 0651996 11d9dfb 5e2e4e3 11d9dfb 5e2e4e3 0651996 5e2e4e3 11d9dfb 5e2e4e3 11d9dfb 5e2e4e3 11d9dfb 5e2e4e3 11d9dfb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 |
"""
Main Gradio interface for the Professional RAG Assistant.
"""
import gradio as gr
import asyncio
import threading
import time
import json
import sys
import signal
import logging
from typing import Any, Dict, List, Optional, Tuple, Union
from pathlib import Path
from concurrent.futures import ThreadPoolExecutor, TimeoutError as FutureTimeoutError
def ensure_dict_safe(value: Any) -> Dict[str, Any]:
"""Ensure a value is a safe dictionary."""
if isinstance(value, dict):
return value
elif value is None or value == "" or value == []:
return {}
elif isinstance(value, str):
# Handle HTML-formatted JSON strings from our HTML components
if value.startswith('<pre>') and value.endswith('</pre>'):
try:
json_str = value[5:-6] # Remove <pre> and </pre> tags
return json.loads(json_str)
except:
return {}
elif value.startswith('{') and value.endswith('}'):
try:
return json.loads(value)
except:
return {}
else:
return {"value": value}
elif isinstance(value, (list, tuple)):
return {"items": list(value)}
elif isinstance(value, (int, float, bool)):
return {"value": value}
else:
return {"data": str(value)}
def dict_to_html_json(value: Any) -> str:
"""Convert a value to HTML-formatted JSON for display."""
try:
safe_dict = ensure_dict_safe(value)
return f"<pre>{json.dumps(safe_dict, indent=2)}</pre>"
except Exception:
return "<pre>{}</pre>"
from .themes import get_theme, get_custom_css
from .components import (
create_header, create_file_upload_section, create_search_interface,
create_results_display, create_document_management, create_system_status,
create_analytics_dashboard, format_document_list, format_search_results,
create_analytics_charts, format_system_overview, create_error_display,
create_success_display, create_loading_display
)
from .conversation_components import (
create_chat_interface, create_chat_history_display, create_chat_input, create_conversation_controls,
create_conversation_state, create_conversation_info_panel, create_typing_indicator,
create_conversation_analytics, update_conversation_analytics, update_chat_history,
format_conversation_response, extract_conversation_stats, get_conversation_css,
get_conversation_javascript, create_chat_message
)
from .utils import (
save_uploaded_files, validate_file_types, cleanup_temp_files,
generate_session_id, format_file_size, parse_search_filters
)
sys.path.append(str(Path(__file__).parent.parent))
from src.rag_system import RAGSystem, EnhancedRAGSystem
from src.error_handler import RAGError
from src.logging_utils import setup_logging, get_safe_logger, sanitize_log_message
class RAGInterface:
"""Main interface class for the RAG system."""
def __init__(self, config_path: str = None, use_enhanced_rag: bool = True):
"""Initialize the RAG interface."""
self.rag_system: Optional[Union[RAGSystem, EnhancedRAGSystem]] = None
self.config_path = config_path or "config.yaml"
self.use_enhanced_rag = use_enhanced_rag
self.active_sessions: Dict[str, Dict[str, Any]] = {}
self._initialization_lock = threading.Lock()
self._initialized = False
self._conversation_enabled = False
# Setup logging with Unicode safety
self.logger = get_safe_logger(__name__)
# Initialize RAG system
self._initialize_rag_system()
def _initialize_rag_system(self) -> None:
"""Initialize the RAG system."""
try:
with self._initialization_lock:
if not self._initialized:
if self.use_enhanced_rag:
print("Initializing Enhanced RAG system with conversation capabilities...")
try:
self.rag_system = EnhancedRAGSystem(config_path=self.config_path)
self._conversation_enabled = hasattr(self.rag_system, 'process_conversation')
print(f"Enhanced RAG system initialized. Conversation enabled: {self._conversation_enabled}")
except Exception as e:
print(f"Failed to initialize Enhanced RAG system: {e}")
print("Falling back to standard RAG system...")
self.rag_system = RAGSystem(config_path=self.config_path)
self._conversation_enabled = False
else:
print("Initializing standard RAG system...")
self.rag_system = RAGSystem(config_path=self.config_path)
self._conversation_enabled = False
# Warm up the system
warmup_result = self.rag_system.warmup()
if warmup_result.get("success"):
system_type = "Enhanced RAG" if self._conversation_enabled else "Standard RAG"
print(f"{system_type} system initialized and warmed up successfully")
self._initialized = True
else:
print(f"RAG system warmup failed: {warmup_result.get('error', {}).get('message')}")
except Exception as e:
print(f"Failed to initialize RAG system: {e}")
self.rag_system = None
def get_system_status(self) -> str:
"""Get current system status HTML."""
if not self.rag_system or not self._initialized:
return create_error_display("System not initialized. Please check configuration and restart.")
try:
stats_response = self.rag_system.get_system_stats()
if not stats_response.get("success"):
return create_error_display(f"Failed to get system status: {stats_response.get('error', {}).get('message')}")
stats = stats_response["data"]
status_info = stats.get("status", {})
if status_info.get("ready"):
status_message = f"System ready - {status_info.get('documents_indexed', 0)} documents indexed"
return create_success_display(status_message)
else:
return create_error_display("System not ready")
except Exception as e:
return create_error_display(f"Error getting system status: {str(e)}")
def process_documents(
self,
files: List[gr.File],
session_id: str,
progress=gr.Progress()
) -> Tuple[str, str, bool, str]:
"""Process uploaded documents."""
if not files:
return (
create_error_display("No files uploaded"),
create_error_display("Please select files to upload"),
False, # upload button disabled
"No documents uploaded yet."
)
if not self.rag_system or not self._initialized:
return (
create_error_display("System not initialized"),
create_error_display("Please restart the application"),
False,
"No documents uploaded yet."
)
try:
self.logger.info(f"Starting document upload process - {len(files)} files received")
# Validate file types
allowed_extensions = [".pdf", ".docx", ".txt"]
valid_files, validation_errors = validate_file_types(files, allowed_extensions)
if validation_errors:
self.logger.warning(f"File validation errors: {validation_errors}")
error_html = create_error_display("\\n".join(validation_errors))
return error_html, error_html, len(valid_files) > 0, self.get_document_list()
self.logger.info(f"File validation passed - {len(valid_files)} valid files")
# Save uploaded files
progress(0.1, desc="Saving uploaded files...")
self.logger.info("Saving uploaded files to temporary directory...")
saved_files = save_uploaded_files(valid_files)
for file_path, original_name in saved_files:
file_size = Path(file_path).stat().st_size / (1024 * 1024) # Size in MB
self.logger.info(f"Saved file: {original_name} ({file_size:.2f} MB) -> {file_path}")
if not saved_files:
return (
create_error_display("No valid files to process"),
create_error_display("Please check your files and try again"),
False,
self.get_document_list()
)
# Process each file with timeout
processed_count = 0
total_files = len(saved_files)
results = []
timeout_seconds = 600 # 10 minutes
def process_single_file(file_path, original_name, session_id):
"""Process a single file - to be run with timeout."""
self.logger.info(f"Processing file: {original_name}")
start_time = time.time()
result = self.rag_system.add_document(
file_path=file_path,
filename=original_name,
user_session=session_id
)
processing_time = time.time() - start_time
self.logger.info(f"File processing completed: {original_name} (took {processing_time:.2f}s)")
return result
self.logger.info(f"Starting processing of {total_files} files with {timeout_seconds//60}-minute timeout per file")
with ThreadPoolExecutor(max_workers=1) as executor:
for i, (file_path, original_name) in enumerate(saved_files):
progress((i + 1) / total_files * 0.8 + 0.1, desc=f"Processing {original_name}...")
self.logger.info(f"Processing file {i+1}/{total_files}: {original_name}")
try:
# Submit the task with timeout
future = executor.submit(process_single_file, file_path, original_name, session_id)
result = future.result(timeout=timeout_seconds)
if result.get("success"):
processed_count += 1
chunks_created = result['data']['chunks_created']
# Log detailed success info
self.logger.info(f"SUCCESS: {original_name} - {chunks_created} chunks created")
# Log sample chunk info if available
if 'sample_chunks' in result['data']:
sample_chunks = result['data']['sample_chunks']
self.logger.info(f"Sample chunks from {original_name}:")
for idx, chunk in enumerate(sample_chunks[:3]): # Show first 3 chunks
chunk_preview = chunk['content'][:100] + "..." if len(chunk['content']) > 100 else chunk['content']
self.logger.info(f" Chunk {idx}: {chunk_preview}")
results.append(f"β
{original_name}: {chunks_created} chunks created")
else:
error_msg = result.get("error", {}).get("message", "Unknown error")
self.logger.error(f"FAILED: {original_name} - {error_msg}")
results.append(f"β {original_name}: {error_msg}")
except FutureTimeoutError:
self.logger.error(f"TIMEOUT: {original_name} exceeded {timeout_seconds//60} minute limit")
results.append(f"β° {original_name}: Processing timed out after {timeout_seconds//60} minutes")
future.cancel() # Cancel the task if possible
except Exception as e:
self.logger.error(f"EXCEPTION: {original_name} - {str(e)}")
results.append(f"β {original_name}: {str(e)}")
progress(1.0, desc="Cleaning up...")
self.logger.info("Cleaning up temporary files...")
# Clean up temporary files
cleanup_temp_files([fp for fp, _ in saved_files])
# Log final summary
total_processing_time = time.time() - time.time() # This will be updated properly
self.logger.info(f"Document upload process completed:")
self.logger.info(f" - Total files: {total_files}")
self.logger.info(f" - Successfully processed: {processed_count}")
self.logger.info(f" - Failed: {total_files - processed_count}")
self.logger.info(f" - Success rate: {(processed_count/total_files*100):.1f}%")
# Create result message
if processed_count == total_files:
self.logger.info(f"[SUCCESS] ALL DOCUMENTS PROCESSED SUCCESSFULLY ({processed_count}/{total_files})")
status_html = create_success_display(
f"Successfully processed {processed_count} documents:\\n" + "\\n".join(results)
)
upload_status = create_success_display(f"All {processed_count} documents processed successfully!")
elif processed_count > 0:
self.logger.warning(f"[PARTIAL] PARTIAL SUCCESS ({processed_count}/{total_files} documents processed)")
status_html = f"""
<div style='background: #fef3c7; border: 1px solid #f59e0b; border-radius: 8px; padding: 1rem; margin: 1rem 0;'>
<div style='font-weight: 600; color: #92400e; margin-bottom: 0.5rem;'>
β οΈ Partially successful ({processed_count}/{total_files} files processed)
</div>
<div style='color: #78350f; font-size: 0.9rem;'>{"<br>".join(results)}</div>
</div>
"""
upload_status = status_html
else:
self.logger.error(f"[ERROR] NO DOCUMENTS PROCESSED SUCCESSFULLY (0/{total_files})")
status_html = create_error_display(
f"Failed to process any documents:\\n" + "\\n".join(results)
)
upload_status = create_error_display("Document processing failed")
return (
status_html,
upload_status,
gr.update(interactive=True), # Enable search button
self.get_document_list()
)
except Exception as e:
# Clean up on error
try:
if 'saved_files' in locals():
cleanup_temp_files([fp for fp, _ in saved_files])
except:
pass
error_message = f"Document processing failed: {str(e)}"
error_html = create_error_display(error_message)
return error_html, error_html, gr.update(interactive=False), self.get_document_list()
def perform_search(
self,
query: str,
search_mode: str,
num_results: int,
enable_reranking: bool,
metadata_filters: str,
session_id: str
) -> Tuple[str, str, str]:
"""Perform search and return results."""
if not self.rag_system or not self._initialized:
error_html = create_error_display("System not initialized")
return error_html, "{}", ""
if not query or not query.strip():
error_html = create_error_display("Please enter a search query")
return error_html, "{}", ""
try:
# Parse metadata filters
filters = parse_search_filters(metadata_filters) if metadata_filters else None
# Perform search
result = self.rag_system.search(
query=query.strip(),
k=num_results,
search_mode=search_mode,
enable_reranking=enable_reranking,
metadata_filter=filters,
user_session=session_id
)
if not result.get("success"):
error_msg = result.get("error", {}).get("message", "Search failed")
error_html = create_error_display(error_msg)
return error_html, "{}", ""
# Format results
search_data = result["data"]
results = search_data.get("results", [])
search_time = search_data.get("search_time", 0)
# Create HTML display
results_html, stats_html = format_search_results(results, search_time, query)
# Create JSON data for detailed view
json_data = {
"query": query,
"search_mode": search_mode,
"results_count": len(results),
"search_time": search_time,
"results": results[:5], # Limit JSON display
"query_suggestions": search_data.get("query_suggestions", [])
}
return results_html, json.dumps(json_data, indent=2), stats_html
except Exception as e:
error_html = create_error_display(f"Search failed: {str(e)}")
return error_html, "{}", ""
def get_document_list(self) -> str:
"""Get formatted document list."""
if not self.rag_system or not self._initialized:
return "<div style='text-align: center; color: #6b7280; padding: 1rem;'>System not initialized</div>"
try:
result = self.rag_system.get_document_list()
if result.get("success"):
documents = result["data"]["documents"]
return format_document_list(documents)
else:
return create_error_display("Failed to load document list")
except Exception as e:
return create_error_display(f"Error loading documents: {str(e)}")
def clear_documents(self) -> Tuple[str, str]:
"""Clear all documents."""
if not self.rag_system or not self._initialized:
error_html = create_error_display("System not initialized")
return error_html, error_html
try:
result = self.rag_system.clear_all_documents()
if result.get("success"):
success_msg = f"Cleared {result['data']['documents_removed']} documents"
success_html = create_success_display(success_msg)
return success_html, self.get_document_list()
else:
error_msg = result.get("error", {}).get("message", "Failed to clear documents")
error_html = create_error_display(error_msg)
return error_html, self.get_document_list()
except Exception as e:
error_html = create_error_display(f"Error clearing documents: {str(e)}")
return error_html, self.get_document_list()
def process_conversation(
self,
user_message: str,
chat_history: str,
session_state: Any = None,
conversation_context: Any = None,
mode: str = "hybrid",
show_sources: bool = True,
show_suggestions: bool = True,
progress=gr.Progress()
) -> Tuple[str, str, str, str]:
"""
Process a conversation message.
Args:
user_message: User's input message
chat_history: Current chat history HTML
session_state: Current session state (can be dict or None)
conversation_context: Current conversation context (can be dict or None)
mode: Response mode (conversation, rag, hybrid)
show_sources: Whether to show sources
show_suggestions: Whether to show suggestions
progress: Gradio progress indicator
Returns:
Tuple of (updated_chat_history, updated_session_state_html, updated_context_html, empty_input)
"""
# Handle session_state and conversation_context properly - ensure they're always dicts
session_state = ensure_dict_safe(session_state)
conversation_context = ensure_dict_safe(conversation_context)
if not self.rag_system or not self._initialized:
error_message = "System not initialized. Please check configuration and restart."
error_html = create_chat_message(content=error_message, role="system")
updated_history = update_chat_history(chat_history, error_message, "system")
return updated_history, "", session_state, conversation_context
if not user_message or not user_message.strip():
return chat_history, "", session_state, conversation_context
try:
# Show typing indicator
progress(0.1, desc="Processing your message...")
# Add user message to chat history
user_message = user_message.strip()
updated_history = update_chat_history(chat_history, user_message, "user")
# Update session state
if not session_state.get("session_id"):
session_state["session_id"] = generate_session_id()
session_state["started_at"] = time.time()
session_state["message_count"] = 0
session_state["user_id"] = f"user_{int(time.time())}"
session_state["message_count"] += 1
progress(0.3, desc="Generating response...")
# Process with enhanced RAG system if available
conversation_processed = False
if self._conversation_enabled and hasattr(self.rag_system, 'process_conversation'):
try:
# Use enhanced conversation processing
result = self.rag_system.process_conversation(
user_input=user_message,
session_id=session_state["session_id"],
user_id=session_state.get("user_id")
)
progress(0.8, desc="Formatting response...")
if result.get("success"):
response_data = result["data"]
assistant_response = response_data.get("response", "I couldn't generate a response.")
confidence = response_data.get("confidence", 0)
sources = response_data.get("sources", []) if show_sources else []
suggestions = response_data.get("suggestions", []) if show_suggestions else []
# Update conversation context
processing_info = response_data.get("processing_info", {})
conversation_context["last_intent"] = processing_info.get("intent", "unknown")
conversation_context["last_route"] = processing_info.get("route", "unknown")
conversation_context["last_confidence"] = confidence
# Add assistant message to chat history
updated_history = update_chat_history(
updated_history,
assistant_response,
"assistant",
sources=sources,
confidence=confidence,
suggestions=suggestions
)
conversation_processed = True
else:
error_msg = result.get("error", {}).get("message", "Conversation processing failed")
self.logger.warning(f"Conversation processing failed: {error_msg}")
# Don't show error to user, fall back to simple response instead
except Exception as e:
self.logger.error(f"Exception in conversation processing: {e}")
# Don't show error to user, fall back to simple response instead
# Fallback: Simple greeting response for basic interactions
if not conversation_processed:
# Check if it's a simple greeting
greeting_words = ["hi", "hello", "hey", "greetings", "good morning", "good afternoon", "good evening"]
if any(word in user_message.lower() for word in greeting_words):
# Simple greeting response
assistant_response = "Hello! I'm your RAG assistant. I can help you search through your documents and answer questions. How can I assist you today?"
updated_history = update_chat_history(
updated_history,
assistant_response,
"assistant",
suggestions=["What documents do you have?", "How can I search for information?", "What can you help me with?"] if show_suggestions else None
)
conversation_processed = True
# If still not processed, provide conversational response
if not conversation_processed:
# Try to search for relevant information first
search_result = self.rag_system.search(
query=user_message,
k=3,
search_mode=mode if mode in ["vector", "bm25", "hybrid"] else "hybrid"
)
progress(0.8, desc="Generating response...")
if search_result.get("success"):
search_data = search_result["data"]
results = search_data.get("results", [])
if results:
# Generate a conversational response based on the search results
best_result = results[0]
content_snippet = best_result.get("content", "")[:300]
source_name = best_result.get("metadata", {}).get("source", "your documents")
response_content = f"Based on {source_name}, I can help with that. {content_snippet}..."
if len(results) > 1:
response_content += f"\n\nI found {len(results)} related pieces of information that might be helpful."
sources = [
{
"title": result.get("metadata", {}).get("source", "Unknown Source"),
"content": result.get("content", "")[:200] + "...",
"score": result.get("scores", {}).get("final_score", 0)
}
for result in results[:2]
] if show_sources else []
suggestions = [
"Can you tell me more about this?",
"What else should I know?",
"Are there any related topics?"
] if show_suggestions else []
updated_history = update_chat_history(
updated_history,
response_content,
"assistant",
sources=sources,
suggestions=suggestions
)
else:
# No documents found - provide helpful conversational response
response_content = f"I understand you're asking about '{user_message}'. "
if hasattr(self.rag_system, 'get_document_list'):
doc_result = self.rag_system.get_document_list()
if doc_result.get("success") and doc_result["data"]["documents"]:
response_content += "I couldn't find specific information about this in your uploaded documents. You might want to try rephrasing your question or asking about topics that are covered in your documents."
suggestions = [
"What documents do I have?",
"What topics are covered in my documents?",
"Can you help me search differently?"
] if show_suggestions else []
else:
response_content += "It looks like you haven't uploaded any documents yet. Upload some documents first, and then I can help answer questions about them!"
suggestions = [
"How do I upload documents?",
"What file types do you support?",
"What can you help me with?"
] if show_suggestions else []
else:
response_content += "I'd be happy to help, but I need more context. Could you provide more details or try rephrasing your question?"
suggestions = [
"Can you be more specific?",
"What exactly are you looking for?",
"How can I help you better?"
] if show_suggestions else []
updated_history = update_chat_history(
updated_history,
response_content,
"assistant",
suggestions=suggestions
)
else:
# Search failed - provide conversational fallback
response_content = f"I'm having trouble processing your question about '{user_message}' right now. Could you try rephrasing it or asking something else?"
suggestions = [
"What can you help me with?",
"How does this system work?",
"Can I try a different question?"
] if show_suggestions else []
updated_history = update_chat_history(
updated_history,
response_content,
"assistant",
suggestions=suggestions
)
progress(1.0, desc="Complete!")
# Ensure HTML-safe return values for display
return updated_history, dict_to_html_json(session_state), dict_to_html_json(conversation_context), ""
except Exception as e:
error_msg = f"Error processing conversation: {str(e)}"
updated_history = update_chat_history(chat_history, error_msg, "system")
# Ensure HTML-safe return values in error case
return updated_history, dict_to_html_json(session_state), dict_to_html_json(conversation_context), ""
def clear_conversation(
self,
session_state: Any = None
) -> Tuple[str, Dict[str, Any], Dict[str, Any]]:
"""
Clear the conversation and reset state.
Args:
session_state: Current session state (can be dict or None)
Returns:
Tuple of (new_chat_history, reset_session_state, reset_context)
"""
# Handle session_state properly
session_state = ensure_dict_safe(session_state)
try:
# Clear conversation session in enhanced RAG system if available
if (self._conversation_enabled and
hasattr(self.rag_system, 'clear_conversation_session') and
session_state.get("session_id")):
self.rag_system.clear_conversation_session(session_state["session_id"])
# Reset states
new_session_state = {
"session_id": None,
"user_id": None,
"started_at": None,
"message_count": 0
}
new_context = {
"mentioned_entities": [],
"active_topics": [],
"last_query_type": None,
"document_context": {}
}
# Create fresh chat history - get the HTML content directly
initial_html = """
<div class="chat-container" id="chat-container">
<div class="chat-welcome">
<div class="welcome-icon">π¬</div>
<h3>Welcome to the RAG Assistant!</h3>
<p>Ask questions about your documents or start a conversation. I can help you find information, explain concepts, and provide detailed answers based on your uploaded documents.</p>
<div class="quick-actions">
<button class="quick-action-button" onclick="sendSuggestion('What documents do I have uploaded?')">π View my documents</button>
<button class="quick-action-button" onclick="sendSuggestion('Summarize the main topics in my documents')">π Summarize topics</button>
<button class="quick-action-button" onclick="sendSuggestion('Help me understand a concept')">π Explain a concept</button>
</div>
</div>
</div>
"""
new_chat_history = initial_html
return new_chat_history, dict_to_html_json(new_session_state), dict_to_html_json(new_context)
except Exception as e:
print(f"Error clearing conversation: {e}")
# Still return reset values even if clearing failed
initial_html = """
<div class="chat-container" id="chat-container">
<div class="chat-welcome">
<div class="welcome-icon">π¬</div>
<h3>Welcome to the RAG Assistant!</h3>
<p>Ask questions about your documents or start a conversation. I can help you find information, explain concepts, and provide detailed answers based on your uploaded documents.</p>
<div class="quick-actions">
<button class="quick-action-button" onclick="sendSuggestion('What documents do I have uploaded?')">π View my documents</button>
<button class="quick-action-button" onclick="sendSuggestion('Summarize the main topics in my documents')">π Summarize topics</button>
<button class="quick-action-button" onclick="sendSuggestion('Help me understand a concept')">π Explain a concept</button>
</div>
</div>
</div>
"""
new_chat_history = initial_html
new_session_state = {"session_id": None, "user_id": None, "started_at": None, "message_count": 0}
new_context = {"mentioned_entities": [], "active_topics": [], "last_query_type": None, "document_context": {}}
return new_chat_history, dict_to_html_json(new_session_state), dict_to_html_json(new_context)
def get_analytics_data(self) -> Tuple[str, gr.Plot, gr.Plot, List[List[str]]]:
"""Get analytics dashboard data."""
if not self.rag_system or not self._initialized:
return (
create_error_display("System not initialized"),
gr.Plot(),
gr.Plot(),
[]
)
try:
result = self.rag_system.get_analytics_dashboard()
if not result.get("success"):
error_html = create_error_display("Failed to load analytics data")
return error_html, gr.Plot(), gr.Plot(), []
analytics_data = result["data"]
# Format system overview
overview_html = format_system_overview(analytics_data)
# Create charts
query_chart, modes_chart = create_analytics_charts(analytics_data)
# Create activity table data
activity_data = []
system_data = analytics_data.get("system", {})
activity_data.append([
"System Started",
"System Initialization",
f"Uptime: {system_data.get('uptime_hours', 0):.1f} hours",
"β
Active"
])
if system_data.get("total_queries", 0) > 0:
activity_data.append([
"Recent",
"Search Queries",
f"{system_data.get('total_queries')} total queries",
"π Active"
])
# Add conversation metrics if enhanced system is enabled
if self._conversation_enabled and hasattr(self.rag_system, 'conversation_manager'):
try:
conversation_stats = self.rag_system.conversation_manager.get_session_statistics()
if conversation_stats.get("active_sessions", 0) > 0:
activity_data.append([
"Now",
"Active Conversations",
f"{conversation_stats.get('active_sessions', 0)} sessions",
"π¬ Active"
])
total_conversations = conversation_stats.get("total_conversations", 0)
if total_conversations > 0:
activity_data.append([
"Recent",
"Conversation Sessions",
f"{total_conversations} total conversations",
"π¬ Complete"
])
total_messages = conversation_stats.get("total_messages", 0)
if total_messages > 0:
activity_data.append([
"Recent",
"Chat Messages",
f"{total_messages} messages exchanged",
"π Active"
])
except Exception as e:
self.logger.warning(f"Could not get conversation statistics: {e}")
if system_data.get("total_documents_processed", 0) > 0:
activity_data.append([
"Recent",
"Document Processing",
f"{system_data.get('total_documents_processed')} documents processed",
"π Complete"
])
return overview_html, query_chart, modes_chart, activity_data
except Exception as e:
error_html = create_error_display(f"Error loading analytics: {str(e)}")
return error_html, gr.Plot(), gr.Plot(), []
def create_interface(self) -> gr.Blocks:
"""Create the main Gradio interface."""
theme = get_theme()
css = get_custom_css()
# Add conversation CSS if conversation is enabled
if self._conversation_enabled:
css += "\n" + get_conversation_css()
with gr.Blocks(
theme=theme,
css=css,
title="Professional RAG Assistant",
analytics_enabled=False
) as interface:
# Add JavaScript for conversation if enabled
if self._conversation_enabled:
gr.HTML(get_conversation_javascript())
# Session state
session_id_state = gr.State(value=generate_session_id())
# Header
create_header()
# System status
system_status = create_system_status()
# Main tabs
with gr.Tabs() as main_tabs:
# Chat Tab
with gr.Tab("π¬ Chat", id="chat"):
gr.Markdown("""
## π€ **Intelligent Document Chat**
**Talk to your documents naturally!** This AI-powered chat interface understands your questions and provides intelligent responses based on your uploaded documents.
β¨ **Key Features:**
- π¬ **Natural Conversation**: Ask questions in plain English
- π― **Smart Responses**: Choose conversation, RAG, or hybrid modes
- π **Source Citations**: See exactly where information comes from
- π‘ **Follow-up Suggestions**: Get AI-generated next questions
π **Get Started:** Upload documents first, then return here to start chatting!
""")
# Chat interface components
chat_components = create_chat_interface()
chat_history_display, chat_input, send_button, clear_chat_button, session_state_display = chat_components[:5]
conversation_context_display, mode_selector, show_sources_checkbox, show_suggestions_checkbox = chat_components[5:]
with gr.Row():
with gr.Column(scale=3):
chat_history_display
with gr.Row():
chat_input
send_button
with gr.Row():
clear_chat_button
mode_selector
with gr.Column(scale=1):
with gr.Accordion("Chat Options", open=True):
show_sources_checkbox
show_suggestions_checkbox
# Hidden debug components - placed outside visible UI but still accessible for event handling
with gr.Row(visible=False):
session_state_display
conversation_context_display
# Document Upload Tab
with gr.Tab("π Document Upload", id="upload"):
gr.Markdown("""
## π **Document Upload & Processing**
**Build your intelligent knowledge base!** Upload your documents and let our AI process them for instant search and conversation capabilities.
π **Supported Formats:**
- π **PDF files** - Research papers, reports, manuals (up to 50MB each)
- π **DOCX files** - Word documents, proposals, notes
- π **TXT files** - Plain text, transcripts, code files
β‘ **Smart Processing:**
- π§ **Intelligent chunking** with context preservation
- π **Metadata extraction** for better organization
- π― **Vector embeddings** for semantic search
- β±οΈ **Real-time progress** tracking
π‘ **Pro Tip:** Upload related documents together for better cross-document insights!
""")
file_upload, upload_status, upload_button = create_file_upload_section()
with gr.Accordion("Upload Settings", open=False):
gr.Markdown("""
**Supported formats:** PDF, DOCX, TXT
**Maximum file size:** 50MB per file
**Processing:** Documents are split into chunks and indexed for search
""")
# Search Tab
with gr.Tab("π Search", id="search"):
gr.Markdown("""
## π **Advanced Document Search**
**Find exactly what you need!** Our hybrid AI search combines vector similarity and keyword matching for superior results.
π― **Search Capabilities:**
- π§ **Semantic Search** - Understands meaning, not just keywords
- π **Keyword Search** - Traditional exact text matching
- π **Hybrid Mode** - Best of both worlds (recommended)
- π **Smart Re-ranking** - Improves relevance with cross-encoders
βοΈ **Advanced Features:**
- ποΈ **Configurable parameters** - Adjust search weights and result count
- π·οΈ **Metadata filtering** - Filter by document properties
- π **Relevance scoring** - See confidence levels for each result
- π **JSON export** - Raw data for technical analysis
π‘ **Perfect for:** Research, fact-finding, and detailed document analysis
""")
with gr.Row():
with gr.Column(scale=4):
search_components = create_search_interface()
search_query, search_controls, search_button = search_components[:3]
search_mode, num_results, enable_reranking = search_components[3:]
with gr.Column(scale=1):
with gr.Accordion("Advanced Options", open=False):
metadata_filters = gr.Textbox(
label="Metadata Filters",
placeholder='{"source": "document.pdf"}',
lines=3,
info="JSON or key:value,key2:value2 format"
)
# Results display
results_html, results_json, search_stats = create_results_display()
with gr.Accordion("Detailed Results (JSON)", open=False):
results_json
# Document Management Tab
with gr.Tab("π Documents", id="documents"):
gr.Markdown("""
## π **Document Library Manager**
**Organize your knowledge base!** View, manage, and monitor all your uploaded documents in one central location.
π **Document Overview:**
- π **File Details** - Name, size, format, and upload date
- π§© **Processing Stats** - Number of chunks and processing status
- π **Search Performance** - Track which documents are most useful
- π **Usage Analytics** - See query patterns and access frequency
π οΈ **Management Tools:**
- ποΈ **Individual Removal** - Delete specific documents
- π§Ή **Bulk Clear** - Remove all documents at once
- π **Refresh Status** - Update document list and statistics
- π **Export List** - Get document inventory
π‘ **Best Practice:** Regularly review and organize your document library for optimal performance
""")
document_list, refresh_docs_btn, clear_docs_btn = create_document_management()
# Analytics Tab
with gr.Tab("π Analytics", id="analytics"):
gr.Markdown("""
## π **System Analytics & Insights**
**Monitor your RAG system performance!** Track usage patterns, system health, and optimization opportunities.
π **Performance Metrics:**
- β‘ **Response Times** - Average query processing speed
- π **Search Accuracy** - Relevance scores and success rates
- π¬ **Chat Analytics** - Conversation patterns and engagement
- π **System Health** - Memory usage and processing efficiency
π― **Usage Insights:**
- π₯ **Popular Queries** - Most frequently asked questions
- π **Document Utilization** - Which documents are accessed most
- π **Mode Preferences** - Conversation vs RAG vs Hybrid usage
- β° **Activity Patterns** - Peak usage times and trends
π οΈ **Optimization Tools:**
- π **Performance Reports** - Detailed analytics export
- π **Real-time Monitoring** - Live system status updates
- π‘ **Recommendations** - AI-suggested improvements
- π **Trend Analysis** - Historical performance tracking
π‘ **Use this data to:** Optimize document libraries, improve search strategies, and enhance user experience
""")
analytics_components = create_analytics_dashboard()
system_overview, query_chart, search_modes_chart, activity_table = analytics_components
with gr.Row():
with gr.Column():
query_chart
with gr.Column():
search_modes_chart
with gr.Accordion("Recent Activity", open=False):
activity_table
refresh_analytics_btn = gr.Button("Refresh Analytics", variant="secondary")
# Event handlers
# File upload events
file_upload.change(
fn=lambda files: (
create_success_display(f"β
{len(files)} file(s) selected! Click the green 'π Process Documents' button below to continue.") if files and len(files) > 0 else "<div style='text-align: center; color: #6b7280; padding: 1rem;'>π No files selected</div>",
gr.update(interactive=files is not None and len(files) > 0)
),
inputs=[file_upload],
outputs=[upload_status, upload_button],
show_progress=False
)
upload_button.click(
fn=self.process_documents,
inputs=[file_upload, session_id_state],
outputs=[upload_status, system_status, search_button, document_list],
show_progress=True
)
# Search events
search_query.change(
fn=lambda query: gr.update(interactive=len(query.strip()) > 0 if query else False),
inputs=[search_query],
outputs=[search_button],
show_progress=False
)
search_button.click(
fn=lambda: create_loading_display("Searching..."),
inputs=[],
outputs=[results_html],
show_progress=False
).then(
fn=self.perform_search,
inputs=[
search_query, search_mode, num_results,
enable_reranking, metadata_filters, session_id_state
],
outputs=[results_html, results_json, search_stats],
show_progress=True
)
# Document management events
refresh_docs_btn.click(
fn=self.get_document_list,
inputs=[],
outputs=[document_list],
show_progress=False
)
clear_docs_btn.click(
fn=self.clear_documents,
inputs=[],
outputs=[system_status, document_list],
show_progress=True
)
# Analytics events
refresh_analytics_btn.click(
fn=self.get_analytics_data,
inputs=[],
outputs=[system_overview, query_chart, search_modes_chart, activity_table],
show_progress=True
)
# Chat events - full RAG with duplicate prevention
def handle_chat_submit(message, history, mode, show_sources, show_suggestions):
# Prevent empty messages
if not message or not message.strip():
return history, dict_to_html_json({}), dict_to_html_json({}), ""
user_message = message.strip()
# Initialize session state
session_state = {
"session_id": f"session_{int(time.time())}",
"message_count": 1
}
conversation_context = {}
# Generate intelligent response
try:
# Check for greetings first
greeting_words = ["hi", "hello", "hey", "greetings", "good morning", "good afternoon", "good evening"]
if any(word in user_message.lower() for word in greeting_words):
response = "Hello! I'm your RAG assistant. I can help you search through your documents and answer questions. How can I assist you today?"
suggestions = ["What documents do you have?", "How can I search for information?", "What can you help me with?"] if show_suggestions else []
sources = []
# Try to search for relevant information
elif self.rag_system and self._initialized:
search_result = self.rag_system.search(
query=user_message,
k=3,
search_mode=mode if mode in ["vector", "bm25", "hybrid"] else "hybrid"
)
if search_result.get("success"):
results = search_result["data"].get("results", [])
if results:
# Generate conversational response from search results
best_result = results[0]
content_snippet = best_result.get("content", "")[:300]
source_name = best_result.get("metadata", {}).get("source", "your documents")
response = f"Based on {source_name}, I can help with that. {content_snippet}..."
if len(results) > 1:
response += f"\n\nI found {len(results)} related pieces of information that might be helpful."
sources = [
{
"title": result.get("metadata", {}).get("source", "Unknown Source"),
"content": result.get("content", "")[:200] + "...",
"score": result.get("scores", {}).get("final_score", 0)
}
for result in results[:2]
] if show_sources else []
suggestions = [
"Can you tell me more about this?",
"What else should I know?",
"Are there any related topics?"
] if show_suggestions else []
else:
# No search results found
doc_result = self.rag_system.get_document_list()
if doc_result.get("success") and doc_result["data"]["documents"]:
response = f"I understand you're asking about '{user_message}'. I couldn't find specific information about this in your uploaded documents. You might want to try rephrasing your question or asking about topics that are covered in your documents."
suggestions = [
"What documents do I have?",
"What topics are covered in my documents?",
"Can you help me search differently?"
] if show_suggestions else []
else:
response = f"I understand you're asking about '{user_message}'. It looks like you haven't uploaded any documents yet. Upload some documents first, and then I can help answer questions about them!"
suggestions = [
"How do I upload documents?",
"What file types do you support?",
"What can you help me with?"
] if show_suggestions else []
sources = []
else:
response = f"I'm having trouble processing your question about '{user_message}' right now. Could you try rephrasing it or asking something else?"
suggestions = [
"What can you help me with?",
"How does this system work?",
"Can I try a different question?"
] if show_suggestions else []
sources = []
else:
response = "The system is not ready yet. Please check the configuration and try again."
suggestions = []
sources = []
except Exception as e:
response = f"I encountered an error processing your message. Please try again."
suggestions = ["Can you try rephrasing?", "What else can I help with?"] if show_suggestions else []
sources = []
# Build complete chat history from scratch to prevent duplicates
new_history = f"""
<div class="chat-container" id="chat-container">
<div class="message user-message">
<div class="message-content">{user_message}</div>
</div>
<div class="message assistant-message">
<div class="message-content">{response}</div>"""
# Add sources if available
if sources:
new_history += """
<div class="message-sources">
<h4>π Sources:</h4>
<div class="sources-list">"""
for source in sources:
new_history += f"""
<div class="source-item">
<div class="source-header">
<span class="source-title">{source['title']}</span>
<span class="source-score">{source['score']:.1%}</span>
</div>
<div class="source-preview">{source['content']}</div>
</div>"""
new_history += """
</div>
</div>"""
# Add suggestions if available
if suggestions:
new_history += """
<div class="message-suggestions">
<h4>π‘ Suggestions:</h4>
<div class="suggestions-list">"""
for suggestion in suggestions:
new_history += f"""
<button class="suggestion-button" onclick="sendSuggestion('{suggestion}')">{suggestion}</button>"""
new_history += """
</div>
</div>"""
new_history += """
</div>
</div>
"""
return new_history, dict_to_html_json(session_state), dict_to_html_json(conversation_context), ""
chat_input.submit(
fn=handle_chat_submit,
inputs=[
chat_input, chat_history_display, mode_selector,
show_sources_checkbox, show_suggestions_checkbox
],
outputs=[
chat_history_display, session_state_display,
conversation_context_display, chat_input
],
show_progress=True
)
send_button.click(
fn=handle_chat_submit,
inputs=[
chat_input, chat_history_display, mode_selector,
show_sources_checkbox, show_suggestions_checkbox
],
outputs=[
chat_history_display, session_state_display,
conversation_context_display, chat_input
],
show_progress=True
)
def handle_clear_chat():
# Return fresh chat history
initial_html = """
<div class="chat-container" id="chat-container">
<div class="chat-welcome">
<div class="welcome-icon">π€</div>
<h3>Welcome to Your Intelligent Document Assistant!</h3>
<p>π― <strong>What I can do for you:</strong></p>
<ul style="text-align: left; max-width: 600px; margin: 0 auto 1.5rem;">
<li>π¬ <strong>Chat naturally</strong> about your documents - ask questions in plain English</li>
<li>π <strong>Find specific information</strong> instantly from your uploaded files</li>
<li>π <strong>Summarize content</strong> and explain complex concepts</li>
<li>π¨ <strong>Choose response modes</strong> - conversational, technical, or hybrid</li>
</ul>
<p style="color: #6b7280; font-size: 0.9rem; margin-bottom: 1.5rem;">
π‘ <em>New here? Start by uploading documents in the "π Document Upload" tab, then come back to chat!</em>
</p>
<div class="quick-actions">
<h4 style="margin: 0 0 1rem; color: #374151;">π Try these to get started:</h4>
<button class="quick-action-button" onclick="sendSuggestion('Hello! What can you help me with?')">π Say hello</button>
<button class="quick-action-button" onclick="sendSuggestion('What documents do I have uploaded?')">π Check my documents</button>
<button class="quick-action-button" onclick="sendSuggestion('Summarize the main topics in my documents')">π Summarize content</button>
<button class="quick-action-button" onclick="sendSuggestion('How does this system work?')">β Learn how it works</button>
</div>
</div>
</div>
"""
return initial_html, dict_to_html_json({}), dict_to_html_json({})
clear_chat_button.click(
fn=handle_clear_chat,
inputs=[],
outputs=[chat_history_display, session_state_display, conversation_context_display],
show_progress=False
)
# Enable chat input when message is typed
chat_input.change(
fn=lambda message: gr.update(interactive=len(message.strip()) > 0 if message else False),
inputs=[chat_input],
outputs=[send_button],
show_progress=False
)
# Initialize interface
interface.load(
fn=lambda: (
self.get_system_status(),
"<div style='text-align: center; color: #6b7280; padding: 1rem;'>π No files selected</div>", # Initial upload status
gr.update(interactive=False), # Upload button disabled initially
gr.update(interactive=False), # Search button disabled initially
gr.update(interactive=False), # Send button disabled initially
self.get_document_list(),
*self.get_analytics_data(),
"", # Initial chat history
dict_to_html_json({}), # Initial session state
dict_to_html_json({}) # Initial conversation context
),
inputs=[],
outputs=[
system_status, upload_status, upload_button, search_button, send_button, document_list,
system_overview, query_chart, search_modes_chart, activity_table,
chat_history_display, session_state_display, conversation_context_display
],
show_progress=False
)
return interface
def create_interface(config_path: str = None) -> gr.Blocks:
"""Create and return the RAG interface."""
try:
# Setup logging configuration first
import yaml
config_file = config_path or "config.yaml"
try:
with open(config_file, 'r') as f:
config = yaml.safe_load(f)
setup_logging(config)
except Exception as e:
print(f"Warning: Could not setup logging from config: {e}")
# Create interface
rag_interface = RAGInterface(config_path)
return rag_interface.create_interface()
except Exception as e:
print(f"Error creating interface: {e}")
raise
if __name__ == "__main__":
# For testing
interface = create_interface()
interface.launch(debug=True) |