Spaces:
Running
Running
File size: 46,222 Bytes
632280e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 |
import os
import gc
import json
import random
import torch
import asyncio
import logging
import time
from typing import List, Dict, Any, Optional, Union, AsyncGenerator, Tuple
from fastapi import FastAPI, HTTPException, Query, Request, Depends, status
from fastapi.responses import StreamingResponse, PlainTextResponse, HTMLResponse, JSONResponse
from fastapi.security import APIKeyHeader
from pydantic import BaseModel, Field, ValidationError, validator
from transformers import (
AutoConfig, AutoModelForCausalLM, AutoTokenizer,
GenerationConfig, LogitsProcessorList,
MinLengthLogitsProcessor, MaxLengthCriteria,
StoppingCriteriaList, StoppingCriteria
)
import uvicorn
from concurrent.futures import ThreadPoolExecutor
import math
import torch.nn.functional as F
import copy
app = FastAPI(title="Chatbot Profesional Profesional API", version="1.0.0")
class StopSequenceCriteria(StoppingCriteria):
def __init__(self, stop_sequences: List[str], tokenizer: AutoTokenizer):
self.tokenizer = tokenizer
self.stop_sequences_text = []
self.stop_sequence_ids = []
for seq in stop_sequences:
if seq:
encoded_ids = tokenizer.encode(seq, add_special_tokens=False)
decoded_text = tokenizer.decode(encoded_ids, skip_special_tokens=True)
if decoded_text:
self.stop_sequences_text.append(decoded_text)
self.stop_sequence_ids.append(encoded_ids)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
if not self.stop_sequence_ids:
return False
input_ids_list = input_ids[0].tolist()
for stop_seq_ids in self.stop_sequence_ids:
stop_len = len(stop_seq_ids)
if len(input_ids_list) >= stop_len:
if input_ids_list[-stop_len:] == stop_seq_ids:
return True
check_tail_len = 50
if self.stop_sequence_ids:
max_stop_seq_token_len = max((len(seq) for seq in self.stop_sequence_ids), default=0)
check_tail_len = max(check_tail_len, max_stop_seq_token_len + 10)
tail_ids = input_ids_list[-min(check_tail_len, len(input_ids_list)):]
tail_text = self.tokenizer.decode(tail_ids, skip_special_tokens=True)
for stop_seq_text in self.stop_sequences_text:
if stop_seq_text and stop_seq_text in tail_text:
return True
return False
logging.getLogger("uvicorn").handlers.clear()
logging.getLogger("uvicorn.error").handlers.clear()
logging.getLogger("uvicorn.access").handlers.clear()
logging.getLogger("uvicorn").propagate = False
logging.getLogger("uvicorn.error").propagate = False
logging.getLogger("uvicorn.access").propagate = False
logging.getLogger("uvicorn").setLevel(logging.CRITICAL)
logging.getLogger("uvicorn.error").setLevel(logging.CRITICAL)
logging.getLogger("uvicorn.access").setLevel(logging.CRITICAL)
logging.getLogger("fastapi").setLevel(logging.CRITICAL)
logging.getLogger("transformers").setLevel(logging.CRITICAL)
logging.getLogger().handlers.clear()
logging.getLogger().addHandler(logging.NullHandler())
DEFAULT_MODEL_NAME = "jnjj/gemma-3-1b-it-qat-int4-quantized-less-restricted-filtered-sf"
MODEL_NAME = os.environ.get("MODEL_NAME", DEFAULT_MODEL_NAME)
SYSTEM_PROMPT = os.environ.get("SYSTEM_PROMPT", "Eres un asistente profesional y servicial.")
try:
MAX_CONTEXT_TOKENS = int(os.environ.get("MAX_CONTEXT_TOKENS", 1024))
if MAX_CONTEXT_TOKENS <= 0:
raise ValueError("MAX_CONTEXT_TOKENS must be positive.")
except (ValueError, TypeError) as e:
MAX_CONTEXT_TOKENS = 1024
try:
MAX_GENERATION_TOKENS = int(os.environ.get("MAX_GENERATION_TOKENS", 512))
if MAX_GENERATION_TOKENS <= 0:
raise ValueError("MAX_GENERATION_TOKENS must be positive.")
except (ValueError, TypeError) as e:
MAX_GENERATION_TOKENS = 512
try:
MAX_CONCURRENT_GENERATIONS = int(os.environ.get("MAX_CONCURRENT_GENERATIONS", 4))
if MAX_CONCURRENT_GENERATIONS <= 0:
raise ValueError("MAX_CONCURRENT_GENERATIONS must be positive.")
except (ValueError, TypeError) as e:
MAX_CONCURRENT_GENERATIONS = 4
TRUST_REMOTE_CODE = (MODEL_NAME == DEFAULT_MODEL_NAME)
TORCH_DTYPE = torch.float32
API_KEY = os.environ.get("API_KEY")
global_model = None
global_tokenizer = None
global_tokens: Dict[str, Optional[int]] = {}
executor = ThreadPoolExecutor(max_workers=MAX_CONCURRENT_GENERATIONS)
generation_semaphore = asyncio.Semaphore(MAX_CONCURRENT_GENERATIONS)
api_key_header = APIKeyHeader(name="X-API-Key", auto_error=False)
async def get_api_key(api_key: str = Depends(api_key_header)):
if API_KEY is None:
return
if api_key is None or api_key != API_KEY:
raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid or missing API Key")
return api_key
class GenerateRequest(BaseModel):
input_text: str = Field(...)
history: Optional[List[Dict[str, str]]] = Field(None)
stream: bool = Field(True)
temperature: float = Field(1.0, ge=0.0, le=2.0)
top_k: int = Field(50, ge=0)
top_p: float = Field(1.0, ge=0.0, le=1.0)
repetition_penalty: float = Field(1.0, ge=0.0)
frequency_penalty: float = Field(0.0, ge=0.0)
presence_penalty: float = Field(0.0, ge=0.0)
num_beams: int = Field(1, ge=1)
length_penalty: float = Field(1.0, ge=0.0)
no_repeat_ngram_size: int = Field(0, ge=0)
early_stopping: bool = Field(False)
do_sample: bool = Field(True)
use_mirostat: bool = Field(False)
mirostat_tau: float = Field(5.0, ge=0.0)
mirostat_eta: float = Field(0.1, ge=0.0)
max_new_tokens: int = Field(MAX_GENERATION_TOKENS, ge=1)
system_prompt: Optional[str] = Field(None)
seed: Optional[int] = Field(None)
stop_sequences: Optional[List[str]] = Field(None)
tokenize_only: bool = Field(False)
strip_trailing_whitespace: bool = Field(False)
remove_incomplete_sentences: bool = Field(False)
num_return_sequences: int = Field(1, ge=1, le=5)
bad_words_ids: Optional[List[List[int]]] = Field(None)
forced_bos_token_id: Optional[int] = Field(None)
forced_eos_token_id: Optional[int] = Field(None)
renormalize_logits: Optional[bool] = Field(None)
suppress_tokens: Optional[List[int]] = Field(None)
begin_suppress_tokens: Optional[List[int]] = Field(None)
end_suppress_tokens: Optional[List[int]] = Field(None)
encoder_no_repeat_ngram_size: int = Field(0, ge=0)
min_length: int = Field(0, ge=0)
max_length: Optional[int] = Field(None)
exponential_decay_length_penalty: Optional[Tuple[float, int, float]] = Field(None)
use_cache: bool = Field(True)
typical_p: float = Field(1.0, ge=0.0, le=1.0)
epsilon_cutoff: float = Field(0.0, ge=0.0)
eta_cutoff: float = Field(0.0, ge=0.0)
temperature_cutoff: Optional[float] = Field(None, ge=0.0)
encoder_repetition_penalty: float = Field(1.0, ge=0.0)
max_time: Optional[float] = Field(None, ge=0.0)
output_watermark: bool = Field(False)
remove_input_from_output: bool = Field(False)
eos_token_id_override: Optional[int] = Field(None)
pad_token_id_override: Optional[int] = Field(None)
bos_token_id_override: Optional[int] = Field(None)
repetition_penalty_range: Optional[int] = Field(None, ge=0)
diversity_penalty: float = Field(0.0, ge=0.0)
num_beam_groups: int = Field(1, ge=1)
return_dict_in_generate: bool = Field(False)
output_attentions: bool = Field(False)
output_hidden_states: bool = Field(False)
output_scores: bool = Field(False)
return_token_logprobs: bool = Field(False)
return_text_from_sequence: bool = Field(True)
length_normalization_factor: Optional[float] = Field(None)
min_new_tokens: int = Field(0, ge=0)
do_normalize_logits: bool = Field(False)
return_generation_inputs: bool = Field(False)
return_unused_generate_parameters: bool = Field(False)
use_fast_tokenizer: bool = Field(True)
model_kwargs: Optional[Dict[str, Any]] = Field(None)
tokenizer_kwargs: Optional[Dict[str, Any]] = Field(None)
return_only_text: bool = Field(False)
@validator('stop_sequences')
def validate_stop_sequences(cls, v):
if v is not None:
if not all(isinstance(seq, str) for seq in v):
raise ValueError('Each stop sequence must be a string')
return v
@validator('bad_words_ids')
def validate_bad_words_ids(cls, v):
if v is not None:
if not all(isinstance(word_id_list, list) and all(isinstance(token_id, int) for token_id in word_id_list) for word_id_list in v):
raise ValueError('bad_words_ids must be a list of lists of integers')
return v
@validator('exponential_decay_length_penalty')
def validate_exponential_decay_length_penalty(cls, v):
if v is not None:
if not (isinstance(v, (list, tuple)) and len(v) == 3 and
isinstance(v[0], (int, float)) and v[0] > 0 and
isinstance(v[1], int) and v[1] >= 0 and
isinstance(v[2], (int, float))):
raise ValueError('exponential_decay_length_penalty must be a tuple/list of 3 numbers (decay_factor, start_index, threshold)')
return v
def format_conversation(input_text: str, history: Optional[List[Dict[str, str]]], system_prompt: Optional[str]) -> str:
full_history: List[Dict[str, str]] = []
used_system_prompt = system_prompt if system_prompt is not None else SYSTEM_PROMPT
if not history or history[0].get("role") != "system" or history[0].get("content") != used_system_prompt:
full_history.append({"role": "system", "content": used_system_prompt})
if history:
full_history.extend(history)
if not full_history or full_history[-1].get("role") != "user" or full_history[-1].get("content") != input_text:
full_history.append({"role": "user", "content": input_text})
if global_tokenizer and hasattr(global_tokenizer, 'apply_chat_template') and global_tokenizer.chat_template:
try:
return global_tokenizer.apply_chat_template(full_history, tokenize=False, add_generation_prompt=True)
except Exception as e:
pass
formatted_text = ""
for i, message in enumerate(full_history):
if i == 0 and message["role"] == "system" and len(full_history) > 1 and full_history[1].get("role") == "system":
continue
if message["role"] == "system":
formatted_text += f"{message['content'].strip()}\n\n"
elif message["role"] == "user":
formatted_text += f"Usuario: {message['content'].strip()}\n"
elif message["role"] == "assistant":
formatted_text += f"Bot: {message['content'].strip()}\n"
if not formatted_text.endswith("Bot:"):
formatted_text += "Bot:"
return formatted_text.strip()
def truncate_encoded_ids(input_ids: torch.Tensor, max_length: int) -> torch.Tensor:
if input_ids.shape[-1] > max_length:
return input_ids[:, -max_length:]
return input_ids
def apply_seed(seed: Optional[int]):
if seed is not None:
torch.manual_seed(seed)
random.seed(seed)
def get_stopping_criteria(req: GenerateRequest, initial_ids: torch.Tensor, tokenizer: AutoTokenizer) -> StoppingCriteriaList:
criteria = StoppingCriteriaList()
max_len_from_req = None
if req.max_length is not None and req.max_length > 0:
max_len_from_req = req.max_length
elif req.max_new_tokens is not None and req.max_new_tokens > 0:
max_len_from_req = initial_ids.shape[-1] + req.max_new_tokens
else:
max_len_from_req = initial_ids.shape[-1] + MAX_GENERATION_TOKENS
if max_len_from_req is not None and max_len_from_req > 0:
criteria.append(MaxLengthCriteria(max_len_from_req))
if req.min_length is not None and req.min_length > 0:
eos_token_id = req.eos_token_id_override if req.eos_token_id_override is not None else global_tokens.get("eos_token_id", -1)
criteria.append(MinLengthLogitsProcessor(initial_ids.shape[-1] + req.min_length, eos_token_id))
if req.stop_sequences:
criteria.append(StopSequenceCriteria(req.stop_sequences, tokenizer))
return criteria
def generate_next_token_sync(
input_ids,
past_key_values,
gen_cfg: GenerationConfig,
device: str
) -> Tuple[torch.Tensor, Any, Optional[float], Optional[torch.Tensor], Any, Any]:
with torch.no_grad():
outputs = global_model(
input_ids, past_key_values=past_key_values,
use_cache=gen_cfg.use_cache, return_dict=True,
output_attentions=gen_cfg.output_attentions,
output_hidden_states=gen_cfg.output_hidden_states,
output_scores=gen_cfg.output_scores,
)
logits = outputs.logits[:, -1, :]
past = outputs.past_key_values
scores = outputs.scores if gen_cfg.output_scores else None
attentions = outputs.attentions if gen_cfg.output_attentions else None
hidden_states = outputs.hidden_states if gen_cfg.output_hidden_states else None
step_logits_for_criteria = logits.clone()
if gen_cfg.do_normalize_logits:
logits = F.log_softmax(logits, dim=-1)
if gen_cfg.do_sample:
if gen_cfg.use_mirostat_mode == 1 and hasattr(global_model, 'mirostat_sample_logits'):
token = global_model.mirostat_sample_logits(
logits=logits,
temperature=gen_cfg.temperature,
mirostat_tau=gen_cfg.mirostat_tau,
mirostat_eta=gen_cfg.mirostat_eta
).unsqueeze(0).to(device)
else:
logits = logits / gen_cfg.temperature
if gen_cfg.temperature_cutoff is not None and gen_cfg.temperature_cutoff > 0:
logits = torch.where(logits < gen_cfg.temperature_cutoff, torch.tensor(-float('Inf')).to(logits.device), logits)
if gen_cfg.top_k:
topk_values, topk_indices = torch.topk(logits, gen_cfg.top_k)
logits[logits < topk_values[:, -1]] = -float('Inf')
if gen_cfg.top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, dim=-1, descending=True)
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > gen_cfg.top_p
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = False
indices_to_remove = sorted_indices[sorted_indices_to_remove]
logits[:, indices_to_remove] = -float('Inf')
if gen_cfg.typical_p < 1.0:
probs = torch.softmax(logits, dim=-1)
entropy = torch.distributions.Categorical(probs).entropy()
probs_sorted, indices_sorted = torch.sort(probs, dim=-1, descending=True)
cumsum_probs_sorted = torch.cumsum(probs_sorted, dim=-1)
mask = cumsum_probs_sorted < gen_cfg.typical_p * entropy.exp()
indices_to_remove = indices_sorted[~mask]
logits[:, indices_to_remove] = -float('Inf')
if gen_cfg.epsilon_cutoff is not None and gen_cfg.epsilon_cutoff > 0:
probs = torch.softmax(logits, dim=-1)
mask = probs < gen_cfg.epsilon_cutoff
logits[:, mask] = -float('Inf')
if gen_cfg.eta_cutoff is not None and gen_cfg.eta_cutoff > 0:
probs = torch.softmax(logits, dim=-1)
mask = probs > gen_cfg.eta_cutoff
logits[:, ~mask] = -float('Inf')
probs = torch.softmax(logits, dim=-1)
token = torch.multinomial(probs, 1)
else:
token = torch.argmax(logits, dim=-1, keepdim=True)
token_logprob = None
if gen_cfg.output_scores:
log_probs = F.log_softmax(step_logits_for_criteria, dim=-1)
if 0 <= token.squeeze().item() < log_probs.shape[-1]:
token_logprob = float(log_probs[:, token.squeeze()].item())
else:
token_logprob = None
return token, past, token_logprob, step_logits_for_criteria, attentions, hidden_states
def post_process_text(text: str, strip_trailing_whitespace: bool, remove_incomplete_sentences: bool) -> str:
if strip_trailing_whitespace:
text = text.rstrip()
if remove_incomplete_sentences:
for terminator in ['.', '!', '?', '\n']:
last_terminator = text.rfind(terminator)
if last_terminator != -1:
text = text[:last_terminator + 1]
break
return text
async def stream_generation_logic(req: GenerateRequest, initial_ids: torch.Tensor, gen_cfg: GenerationConfig, device: str) -> AsyncGenerator[Union[str, Tuple[Dict[str, Any], str]], None]:
past = None
generated_tokens_count = 0
eos_token_id = req.eos_token_id_override if req.eos_token_id_override is not None else global_tokens.get("eos_token_id")
pad_token_id = req.pad_token_id_override if req.pad_token_id_override is not None else global_tokens.get("pad_token_id", eos_token_id)
stop_token_ids = {eos_token_id} if eos_token_id is not None else set()
if pad_token_id is not None and pad_token_id != eos_token_id:
stop_token_ids.add(pad_token_id)
current_ids = initial_ids
start_time = time.time()
total_ids_list = initial_ids.tolist()[0]
finish_reason = "unknown"
stopping_criteria = get_stopping_criteria(req, initial_ids, global_tokenizer)
last_step_logits = None
accumulated_text_for_processing = ""
try:
while True:
if generated_tokens_count >= req.max_new_tokens:
finish_reason = "max_new_tokens"
break
if req.max_time is not None and (time.time() - start_time) > req.max_time:
finish_reason = "time"
break
input_ids_sync = current_ids if past is None else token
token, past, token_logprob, step_logits, attentions, hidden_states = await asyncio.to_thread(
generate_next_token_sync,
input_ids_sync,
past,
gen_cfg,
device
)
last_step_logits = step_logits
generated_token_id = token[0].item()
total_ids_list.append(generated_token_id)
text = global_tokenizer.decode([generated_token_id], skip_special_tokens=True)
accumulated_text_for_processing += text
if req.return_only_text:
yield text
else:
chunk_payload: Dict[str, Any] = {
"type": "token",
"text": text,
"token_id": generated_token_id,
"generated_tokens_count": generated_tokens_count + 1,
}
if req.return_token_logprobs and token_logprob is not None:
chunk_payload["logprob"] = token_logprob
yield json.dumps(chunk_payload) + "\n"
if generated_token_id in stop_token_ids:
finish_reason = "eos_token"
break
current_full_ids_tensor = torch.tensor([total_ids_list], device=device)
if stopping_criteria(current_full_ids_tensor, step_logits):
finish_reason = "stopping_criteria"
current_len = len(total_ids_list)
initial_len = initial_ids.shape[-1]
max_len_crit_met = any(isinstance(c, MaxLengthCriteria) for c in stopping_criteria) and \
( (req.max_new_tokens is not None and current_len >= (initial_len + req.max_new_tokens)) or
(req.max_length is not None and current_len >= req.max_length) )
stop_seq_crit_met = any(isinstance(c, StopSequenceCriteria) for c in stopping_criteria) and req.stop_sequences and \
any(seq in global_tokenizer.decode(total_ids_list[initial_len:], skip_special_tokens=True) for seq in req.stop_sequences)
if max_len_crit_met:
if req.max_new_tokens is not None and current_len >= (initial_len + req.max_new_tokens):
finish_reason = "max_new_tokens"
elif req.max_length is not None and current_len >= req.max_length:
finish_reason = "max_length"
if stop_seq_crit_met:
finish_reason = "stop_sequence"
break
current_ids = token
generated_tokens_count += 1
final_text_raw = global_tokenizer.decode(total_ids_list[initial_ids.shape[-1]:], skip_special_tokens=True)
if req.stop_sequences and finish_reason == "stop_sequence":
for stop_seq in req.stop_sequences:
if stop_seq and stop_seq in final_text_raw:
final_text_raw = final_text_raw.split(stop_seq, 1)[0]
break
final_text_processed = post_process_text(final_text_raw, req.strip_trailing_whitespace, req.remove_incomplete_sentences)
if not req.return_only_text:
final_payload: Dict[str, Any] = {
"type": "done",
"total_prompt_tokens": initial_ids.shape[-1],
"total_generated_tokens": generated_tokens_count,
"total_sequence_tokens": len(total_ids_list),
"final_text": final_text_processed,
"finish_reason": finish_reason
}
yield json.dumps(final_payload) + "\n"
except Exception as e:
if req.return_only_text:
yield f"Error: {e}\n"
else:
error_payload = {"type": "error", "message": str(e)}
yield json.dumps(error_payload) + "\n"
finally:
await cleanup()
async def non_stream_generation_logic(req: GenerateRequest, initial_ids: torch.Tensor, gen_cfg: GenerationConfig, device: str) -> Dict[str, Any]:
try:
logits_processor_list = LogitsProcessorList()
stopping_criteria_list = get_stopping_criteria(req, initial_ids, global_tokenizer)
with torch.no_grad():
out = global_model.generate(
input_ids=initial_ids,
generation_config=gen_cfg,
return_dict_in_generate=True,
output_scores=req.output_scores,
output_attentions=req.output_attentions,
output_hidden_states=req.output_hidden_states,
num_return_sequences=req.num_return_sequences,
bad_words_ids=req.bad_words_ids,
suppress_tokens=req.suppress_tokens,
begin_suppress_tokens=req.begin_suppress_tokens,
end_suppress_tokens=req.end_suppress_tokens,
logits_processor=logits_processor_list if logits_processor_list else None,
stopping_criteria=stopping_criteria_list if stopping_criteria_list else None,
)
generated_data = []
for i in range(req.num_return_sequences):
if i >= len(out.sequences):
break
sequence = out.sequences[i]
start_index = initial_ids.shape[-1]
generated_ids_tensor = sequence[start_index:]
full_sequence_ids = sequence.tolist()
text = global_tokenizer.decode(generated_ids_tensor, skip_special_tokens=True)
if req.stop_sequences:
for stop_seq in req.stop_sequences:
if stop_seq and stop_seq in text:
text = text.split(stop_seq, 1)[0]
break
text = post_process_text(text, req.strip_trailing_whitespace, req.remove_incomplete_sentences)
finish_reason = "length"
eos_token_id = req.eos_token_id_override if req.eos_token_id_override is not None else global_tokens.get("eos_token_id")
if len(generated_ids_tensor) > 0 and eos_token_id is not None and generated_ids_tensor[-1] == eos_token_id:
finish_reason = "eos_token"
elif len(generated_ids_tensor) >= gen_cfg.max_new_tokens:
finish_reason = "max_new_tokens"
elif req.max_length is not None and len(full_sequence_ids) >= req.max_length:
finish_reason = "max_length"
elif hasattr(out, 'max_time_exceeded') and out.max_time_exceeded:
finish_reason = "time"
if req.stop_sequences and finish_reason == "length":
decoded_full_output = global_tokenizer.decode(full_sequence_ids, skip_special_tokens=True)
if any(seq in decoded_full_output for seq in req.stop_sequences):
finish_reason = "stop_sequence"
item_data: Dict[str, Any] = {
"text": text if req.return_text_from_sequence else None,
"token_ids": generated_ids_tensor.tolist(),
"generated_tokens_count": len(generated_ids_tensor),
"finish_reason": finish_reason
}
if not req.remove_input_from_output:
item_data["full_sequence_token_ids"] = full_sequence_ids
if req.output_scores and hasattr(out, 'scores') and out.scores is not None:
item_data["scores"] = "Scores output needs custom handling (complex structure)."
if req.return_token_logprobs:
item_data["token_logprobs"] = "Token logprobs require parsing scores output which is complex for batched/beamed generation."
if req.output_attentions and hasattr(out, 'attentions') and out.attentions is not None:
item_data["attentions"] = "Attentions output needs custom handling (too large)."
if req.output_hidden_states and hasattr(out, 'hidden_states') and out.hidden_states is not None:
item_data["hidden_states"] = "Hidden states output needs custom handling (too large)."
if hasattr(out, 'watermark') and out.watermark is not None:
item_data["watermark"] = out.watermark[i] if isinstance(out.watermark, list) and len(out.watermark) > i else out.watermark
generated_data.append(item_data)
response_payload: Dict[str, Any] = {
"prompt_tokens": initial_ids.shape[-1],
"generated_sequences": generated_data,
}
if req.num_return_sequences == 1 and generated_data:
response_payload["total_tokens"] = response_payload["prompt_tokens"] + generated_data[0]["generated_tokens_count"]
if req.return_dict_in_generate:
raw_out_dict = {}
for key in out.keys():
if key not in ['sequences', 'scores', 'attentions', 'hidden_states', 'past_key_values', 'watermark', 'sequences_scores']:
value = out[key]
if isinstance(value, torch.Tensor):
raw_out_dict[key] = value.tolist()
else:
raw_out_dict[key] = value
response_payload["raw_generate_output"] = raw_out_dict
return response_payload
except Exception as e:
raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=f"Generation error: {e}")
async def cleanup():
gc.collect()
@app.on_event("startup")
async def load_model():
global global_model, global_tokenizer, global_tokens, MODEL_NAME, TRUST_REMOTE_CODE, TORCH_DTYPE
torch.set_num_threads(max(1, os.cpu_count() // 2))
torch.set_num_interop_threads(max(1, os.cpu_count() // 4))
device = "cpu"
current_model_name = MODEL_NAME
current_trust_remote_code = TRUST_REMOTE_CODE
try:
config = AutoConfig.from_pretrained(current_model_name, trust_remote_code=current_trust_remote_code)
original_config = copy.deepcopy(config)
if hasattr(config, 'bos_token_id'):
config.bos_token_id = 1
if hasattr(config, 'eos_token_id'):
config.eos_token_id = 2
if hasattr(config, 'max_position_embeddings'):
config.max_position_embeddings = MAX_CONTEXT_TOKENS
if hasattr(config, 'n_positions'):
config.n_positions = MAX_CONTEXT_TOKENS
if hasattr(config, 'seq_len'):
config.seq_len = MAX_CONTEXT_TOKENS
if hasattr(config, 'ctx'):
config.ctx = MAX_CONTEXT_TOKENS
if hasattr(config, 'n_ctx'):
config.n_ctx = MAX_CONTEXT_TOKENS
if hasattr(config, 'max_seq_length'):
config.max_seq_length = MAX_CONTEXT_TOKENS
if hasattr(config, 'max_sequence_length'):
config.max_sequence_length = MAX_CONTEXT_TOKENS
if hasattr(config, 'max_length'):
config.max_length = MAX_CONTEXT_TOKENS
if hasattr(config, 'block_size'):
config.block_size = MAX_CONTEXT_TOKENS
if hasattr(config, 'use_cache'):
config.use_cache = False
if hasattr(config, 'tie_word_embeddings'):
config.tie_word_embeddings = True
if hasattr(config, 'output_attentions'):
config.output_attentions = False
if hasattr(config, 'output_hidden_states'):
config.output_hidden_states = False
if hasattr(config, 'use_cache'):
config.use_cache = False
tokenizer_kwargs = {"config": original_config, "trust_remote_code": current_trust_remote_code}
global_tokenizer = AutoTokenizer.from_pretrained(current_model_name, **tokenizer_kwargs)
model_kwargs = {"config": config, "torch_dtype": TORCH_DTYPE, "trust_remote_code": current_trust_remote_code}
global_model = AutoModelForCausalLM.from_pretrained(current_model_name, **model_kwargs)
global_model.to(device)
global_model.eval()
global_tokens["eos_token_id"] = global_tokenizer.eos_token_id
global_tokens["pad_token_id"] = global_tokenizer.pad_token_id
if global_tokens["pad_token_id"] is None and global_tokens["eos_token_id"] is not None:
global_tokens["pad_token_id"] = global_tokens["eos_token_id"]
if global_model.config.pad_token_id is None:
global_model.config.pad_token_id = global_tokens["pad_token_id"]
elif global_tokens["pad_token_id"] is None and global_tokens["eos_token_id"] is None:
pass
if global_model.config.pad_token_id is None and global_tokens.get("pad_token_id") is not None:
global_model.config.pad_token_id = global_tokens["pad_token_id"]
except Exception as e:
global_model = None
global_tokenizer = None
global_tokens = {}
html_code = """
<!DOCTYPE html>
<html lang="es">
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Chatbot Profesional</title>
<style>
body { font-family: Arial, sans-serif; margin: 20px; }
#chatbox { width: 100%; height: 400px; border: 1px solid #ccc; padding: 10px; overflow-y: scroll; margin-bottom: 10px; }
#user-input { width: calc(100% - 100px); padding: 8px; box-sizing: border-box;}
#send-btn { width: 90px; padding: 8px 0;}
#input-area { display: flex;}
</style>
</head>
<body>
<h1>Chatbot Profesional (POST API)</h1>
<div id="chatbox"></div>
<div id="input-area">
<input type="text" id="user-input" placeholder="Escribe tu mensaje aquí..." autocomplete="off"/>
<button id="send-btn">Enviar</button>
</div>
<script>
const chatbox = document.getElementById('chatbox');
const userInput = document.getElementById('user-input');
const sendBtn = document.getElementById('send-btn');
let conversationHistory = [];
const DEFAULT_SYSTEM_PROMPT = "Eres un asistente profesional y servicial.";
let currentSystemPrompt = DEFAULT_SYSTEM_PROMPT;
let botMessageElement = null;
function appendMessage(sender, text, isStreaming = false) {
let msg;
if (isStreaming && botMessageElement) {
botMessageElement.textContent += text;
} else {
msg = document.createElement('p');
msg.innerHTML = `<strong>${sender}:</strong> `;
const textNode = document.createTextNode(text);
msg.appendChild(textNode);
chatbox.appendChild(msg);
if (sender === 'Bot' && isStreaming) {
botMessageElement = textNode;
} else {
botMessageElement = null;
}
}
chatbox.scrollTop = chatbox.scrollHeight;
}
function updateHistory(role, content) {
conversationHistory.push({ "role": role, "content": content });
const maxHistorySize = 10;
if (conversationHistory.length > maxHistorySize * 2) {
conversationHistory = conversationHistory.slice(-(maxHistorySize * 2));
}
}
async function sendMessage() {
const text = userInput.value;
if (!text) {
return;
}
appendMessage('Usuario', text);
updateHistory("user", text);
userInput.value = '';
sendBtn.disabled = true;
botMessageElement = null;
const messagePayload = {
input_text: text,
history: conversationHistory,
system_prompt: currentSystemPrompt,
stream: true,
temperature: 1.0,
top_k: 50,
top_p: 1.0,
repetition_penalty: 1.0,
frequency_penalty: 0.0,
presence_penalty: 0.0,
num_beams: 1,
length_penalty: 1.0,
no_repeat_ngram_size: 0,
early_stopping: false,
do_sample: true,
use_mirostat: false,
mirostat_tau: 5.0,
mirostat_eta: 0.1,
max_new_tokens: 512,
num_return_sequences: 1,
return_token_logprobs: true
};
try {
const response = await fetch('/generate', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify(messagePayload),
});
if (!response.ok) {
const errorData = await response.json();
throw new Error(`API Error: ${response.status} ${response.statusText} - ${errorData.detail || errorData.error}`);
}
const reader = response.body.getReader();
const decoder = new TextDecoder();
let buffer = '';
let currentBotResponse = "";
while (true) {
const { value, done } = await reader.read();
if (done) break;
buffer += decoder.decode(value, { stream: true });
const lines = buffer.split('\n');
buffer = lines.pop();
for (const line of lines) {
if (line.trim() === '') continue;
try {
const data = JSON.parse(line);
if (data.type === 'token') {
currentBotResponse += data.text;
appendMessage('Bot', data.text, true);
} else if (data.type === 'done') {
if (data.total_tokens !== undefined) {
appendMessage('System', `Generated ${data.total_tokens} tokens. Finish reason: ${data.finish_reason}`);
}
if (data.final_text !== undefined) {
updateHistory("assistant", data.final_text);
} else if (currentBotResponse) {
updateHistory("assistant", currentBotResponse);
}
} else if (data.type === 'error') {
appendMessage('Error', data.message);
currentBotResponse = "";
}
} catch (e) {
appendMessage('Error', 'Failed to process stream.');
currentBotResponse = "";
reader.cancel();
return;
}
}
}
if (buffer.trim() !== '') {
try {
const data = JSON.parse(buffer);
if (data.type === 'token') {
currentBotResponse += data.text;
appendMessage('Bot', data.text, true);
} else if (data.type === 'done') {
if (data.total_tokens !== undefined) {
appendMessage('System', `Generated ${data.total_tokens} tokens. Finish reason: ${data.finish_reason}`);
}
if (data.final_text !== undefined) {
updateHistory("assistant", data.final_text);
} else if (currentBotResponse) {
updateHistory("assistant", currentBotResponse);
}
} else if (data.type === 'error') {
appendMessage('Error', data.message);
currentBotResponse = "";
}
} catch (e) {
appendMessage('Error', 'Failed to process remaining stream data.');
currentBotResponse = "";
}
}
if (currentBotResponse && !botMessageElement) {
updateHistory("assistant", currentBotResponse);
}
botMessageElement = null;
currentBotResponse = "";
} catch (error) {
appendMessage('Error', error.message || 'An unknown error occurred.');
botMessageElement = null;
currentBotResponse = "";
} finally {
sendBtn.disabled = false;
}
}
sendBtn.onclick = sendMessage;
userInput.addEventListener('keypress', function(event) {
if (event.key === 'Enter') {
event.preventDefault();
sendMessage();
}
});
</script>
</body>
</html>
"""
@app.get("/", response_class=HTMLResponse, summary="Interactive HTML interface")
async def root():
return HTMLResponse(content=html_code)
@app.post("/generate", summary="Generate text", dependencies=[Depends(get_api_key)])
async def generate_endpoint(req: GenerateRequest):
if global_model is None or global_tokenizer is None:
raise HTTPException(status_code=status.HTTP_503_SERVICE_UNAVAILABLE, detail="Model is not loaded.")
device = "cpu"
apply_seed(req.seed)
try:
initial_prompt_text = format_conversation(req.input_text, req.history, req.system_prompt)
except Exception as e:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail=f"Error formatting conversation: {e}")
try:
tokenizer_encoding_kwargs = req.tokenizer_kwargs or {}
encoded = global_tokenizer(initial_prompt_text, return_tensors="pt", add_special_tokens=False, **tokenizer_encoding_kwargs).to(device)
initial_ids_before_trunc = encoded.input_ids
initial_prompt_tokens_count_before_trunc = initial_ids_before_trunc.shape[-1]
ids = truncate_encoded_ids(initial_ids_before_trunc, MAX_CONTEXT_TOKENS)
current_prompt_tokens_count = ids.shape[-1]
except Exception as e:
await cleanup()
raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=f"Tokenizer encoding error: {e}")
if req.tokenize_only:
await cleanup()
return JSONResponse({
"prompt_tokens_count": initial_prompt_tokens_count_before_trunc,
"max_context_tokens": MAX_CONTEXT_TOKENS,
"truncated": initial_prompt_tokens_count_before_trunc > MAX_CONTEXT_TOKENS,
"input_text_processed": initial_prompt_text,
"input_ids_truncated": ids.tolist()[0]
})
total_capacity = MAX_CONTEXT_TOKENS + MAX_GENERATION_TOKENS
total_requested_seq_len = current_prompt_tokens_count + req.max_new_tokens
if not req.stream and total_requested_seq_len > total_capacity:
await cleanup()
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"Requested sequence length ({total_requested_seq_len} tokens = {current_prompt_tokens_count} prompt + {req.max_new_tokens} new) exceeds model capacity ({total_capacity} tokens) and non-streaming is requested. Consider enabling streaming or reducing max_new_tokens."
)
async with generation_semaphore:
try:
gen_cfg = GenerationConfig(
temperature=req.temperature,
top_k=req.top_k,
top_p=req.top_p,
repetition_penalty=req.repetition_penalty,
frequency_penalty=req.frequency_penalty,
presence_penalty=req.presence_penalty,
num_beams=req.num_beams if not req.stream else 1,
length_penalty=req.length_penalty,
no_repeat_ngram_size=req.no_repeat_ngram_size,
early_stopping=req.early_stopping,
do_sample=req.do_sample,
use_mirostat_mode=1 if req.use_mirostat else 0,
mirostat_tau=req.mirostat_tau,
mirostat_eta=req.mirostat_eta,
max_new_tokens=req.max_new_tokens,
eos_token_id=req.eos_token_id_override if req.eos_token_id_override is not None else global_tokens.get("eos_token_id"),
pad_token_id=req.pad_token_id_override if req.pad_token_id_override is not None else global_tokens.get("pad_token_id"),
bos_token_id=req.bos_token_id_override if req.bos_token_id_override is not None else global_tokenizer.bos_token_id,
num_return_sequences=req.num_return_sequences if not req.stream else 1,
bad_words_ids=req.bad_words_ids,
forced_bos_token_id=req.forced_bos_token_id,
forced_eos_token_id=req.forced_eos_token_id,
renormalize_logits=req.renormalize_logits,
suppress_tokens=req.suppress_tokens,
begin_suppress_tokens=req.begin_suppress_tokens,
end_suppress_tokens=req.end_suppress_tokens,
encoder_no_repeat_ngram_size=req.encoder_no_repeat_ngram_size,
min_length=req.min_length,
max_length=req.max_length,
exponential_decay_length_penalty=req.exponential_decay_length_penalty,
use_cache=req.use_cache,
typical_p=req.typical_p,
epsilon_cutoff=req.epsilon_cutoff,
eta_cutoff=req.eta_cutoff,
temperature_cutoff=req.temperature_cutoff,
encoder_repetition_penalty=req.encoder_repetition_penalty,
max_time=req.max_time,
output_watermark=req.output_watermark,
diversity_penalty=req.diversity_penalty,
num_beam_groups=req.num_beam_groups if not req.stream else 1,
length_normalization_factor=req.length_normalization_factor,
min_new_tokens=req.min_new_tokens,
do_normalize_logits=req.do_normalize_logits,
output_scores=req.output_scores,
output_attentions=req.output_attentions,
output_hidden_states=req.output_hidden_states,
)
if req.stream:
gen_cfg.use_cache = True
gen_cfg.num_beams = 1
gen_cfg.num_return_sequences = 1
gen_cfg.num_beam_groups = 1
return StreamingResponse(stream_generation_logic(req, ids, gen_cfg, device), media_type="text/plain" if req.return_only_text else "application/json")
else:
response_payload = await non_stream_generation_logic(req, ids, gen_cfg, device)
if req.return_only_text:
texts = [seq["text"] for seq in response_payload.get("generated_sequences", []) if seq.get("text") is not None]
if req.num_return_sequences == 1 and texts:
return PlainTextResponse(texts[0])
else:
return JSONResponse(texts)
else:
return JSONResponse(response_payload)
except Exception as e:
raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=f"Generation error: {e}")
finally:
await cleanup()
if __name__ == "__main__":
uvicorn.run(
app, host="0.0.0.0", port=7860,
log_level="critical",
access_log=False
) |