import os import gc import json import random import torch import asyncio import logging import time from typing import List, Dict, Any, Optional, Union, AsyncGenerator, Tuple from fastapi import FastAPI, HTTPException, Query, Request, Depends, status from fastapi.responses import StreamingResponse, PlainTextResponse, HTMLResponse, JSONResponse from fastapi.security import APIKeyHeader from pydantic import BaseModel, Field, ValidationError, validator from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, LogitsProcessorList, MinLengthLogitsProcessor, MaxLengthCriteria, StoppingCriteriaList, StoppingCriteria ) import uvicorn from concurrent.futures import ThreadPoolExecutor import math import torch.nn.functional as F import copy app = FastAPI(title="Chatbot Profesional Profesional API", version="1.0.0") class StopSequenceCriteria(StoppingCriteria): def __init__(self, stop_sequences: List[str], tokenizer: AutoTokenizer): self.tokenizer = tokenizer self.stop_sequences_text = [] self.stop_sequence_ids = [] for seq in stop_sequences: if seq: encoded_ids = tokenizer.encode(seq, add_special_tokens=False) decoded_text = tokenizer.decode(encoded_ids, skip_special_tokens=True) if decoded_text: self.stop_sequences_text.append(decoded_text) self.stop_sequence_ids.append(encoded_ids) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: if not self.stop_sequence_ids: return False input_ids_list = input_ids[0].tolist() for stop_seq_ids in self.stop_sequence_ids: stop_len = len(stop_seq_ids) if len(input_ids_list) >= stop_len: if input_ids_list[-stop_len:] == stop_seq_ids: return True check_tail_len = 50 if self.stop_sequence_ids: max_stop_seq_token_len = max((len(seq) for seq in self.stop_sequence_ids), default=0) check_tail_len = max(check_tail_len, max_stop_seq_token_len + 10) tail_ids = input_ids_list[-min(check_tail_len, len(input_ids_list)):] tail_text = self.tokenizer.decode(tail_ids, skip_special_tokens=True) for stop_seq_text in self.stop_sequences_text: if stop_seq_text and stop_seq_text in tail_text: return True return False logging.getLogger("uvicorn").handlers.clear() logging.getLogger("uvicorn.error").handlers.clear() logging.getLogger("uvicorn.access").handlers.clear() logging.getLogger("uvicorn").propagate = False logging.getLogger("uvicorn.error").propagate = False logging.getLogger("uvicorn.access").propagate = False logging.getLogger("uvicorn").setLevel(logging.CRITICAL) logging.getLogger("uvicorn.error").setLevel(logging.CRITICAL) logging.getLogger("uvicorn.access").setLevel(logging.CRITICAL) logging.getLogger("fastapi").setLevel(logging.CRITICAL) logging.getLogger("transformers").setLevel(logging.CRITICAL) logging.getLogger().handlers.clear() logging.getLogger().addHandler(logging.NullHandler()) DEFAULT_MODEL_NAME = "jnjj/gemma-3-1b-it-qat-int4-quantized-less-restricted-filtered-sf" MODEL_NAME = os.environ.get("MODEL_NAME", DEFAULT_MODEL_NAME) SYSTEM_PROMPT = os.environ.get("SYSTEM_PROMPT", "Eres un asistente profesional y servicial.") try: MAX_CONTEXT_TOKENS = int(os.environ.get("MAX_CONTEXT_TOKENS", 1024)) if MAX_CONTEXT_TOKENS <= 0: raise ValueError("MAX_CONTEXT_TOKENS must be positive.") except (ValueError, TypeError) as e: MAX_CONTEXT_TOKENS = 1024 try: MAX_GENERATION_TOKENS = int(os.environ.get("MAX_GENERATION_TOKENS", 512)) if MAX_GENERATION_TOKENS <= 0: raise ValueError("MAX_GENERATION_TOKENS must be positive.") except (ValueError, TypeError) as e: MAX_GENERATION_TOKENS = 512 try: MAX_CONCURRENT_GENERATIONS = int(os.environ.get("MAX_CONCURRENT_GENERATIONS", 4)) if MAX_CONCURRENT_GENERATIONS <= 0: raise ValueError("MAX_CONCURRENT_GENERATIONS must be positive.") except (ValueError, TypeError) as e: MAX_CONCURRENT_GENERATIONS = 4 TRUST_REMOTE_CODE = (MODEL_NAME == DEFAULT_MODEL_NAME) TORCH_DTYPE = torch.float32 API_KEY = os.environ.get("API_KEY") global_model = None global_tokenizer = None global_tokens: Dict[str, Optional[int]] = {} executor = ThreadPoolExecutor(max_workers=MAX_CONCURRENT_GENERATIONS) generation_semaphore = asyncio.Semaphore(MAX_CONCURRENT_GENERATIONS) api_key_header = APIKeyHeader(name="X-API-Key", auto_error=False) async def get_api_key(api_key: str = Depends(api_key_header)): if API_KEY is None: return if api_key is None or api_key != API_KEY: raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid or missing API Key") return api_key class GenerateRequest(BaseModel): input_text: str = Field(...) history: Optional[List[Dict[str, str]]] = Field(None) stream: bool = Field(True) temperature: float = Field(1.0, ge=0.0, le=2.0) top_k: int = Field(50, ge=0) top_p: float = Field(1.0, ge=0.0, le=1.0) repetition_penalty: float = Field(1.0, ge=0.0) frequency_penalty: float = Field(0.0, ge=0.0) presence_penalty: float = Field(0.0, ge=0.0) num_beams: int = Field(1, ge=1) length_penalty: float = Field(1.0, ge=0.0) no_repeat_ngram_size: int = Field(0, ge=0) early_stopping: bool = Field(False) do_sample: bool = Field(True) use_mirostat: bool = Field(False) mirostat_tau: float = Field(5.0, ge=0.0) mirostat_eta: float = Field(0.1, ge=0.0) max_new_tokens: int = Field(MAX_GENERATION_TOKENS, ge=1) system_prompt: Optional[str] = Field(None) seed: Optional[int] = Field(None) stop_sequences: Optional[List[str]] = Field(None) tokenize_only: bool = Field(False) strip_trailing_whitespace: bool = Field(False) remove_incomplete_sentences: bool = Field(False) num_return_sequences: int = Field(1, ge=1, le=5) bad_words_ids: Optional[List[List[int]]] = Field(None) forced_bos_token_id: Optional[int] = Field(None) forced_eos_token_id: Optional[int] = Field(None) renormalize_logits: Optional[bool] = Field(None) suppress_tokens: Optional[List[int]] = Field(None) begin_suppress_tokens: Optional[List[int]] = Field(None) end_suppress_tokens: Optional[List[int]] = Field(None) encoder_no_repeat_ngram_size: int = Field(0, ge=0) min_length: int = Field(0, ge=0) max_length: Optional[int] = Field(None) exponential_decay_length_penalty: Optional[Tuple[float, int, float]] = Field(None) use_cache: bool = Field(True) typical_p: float = Field(1.0, ge=0.0, le=1.0) epsilon_cutoff: float = Field(0.0, ge=0.0) eta_cutoff: float = Field(0.0, ge=0.0) temperature_cutoff: Optional[float] = Field(None, ge=0.0) encoder_repetition_penalty: float = Field(1.0, ge=0.0) max_time: Optional[float] = Field(None, ge=0.0) output_watermark: bool = Field(False) remove_input_from_output: bool = Field(False) eos_token_id_override: Optional[int] = Field(None) pad_token_id_override: Optional[int] = Field(None) bos_token_id_override: Optional[int] = Field(None) repetition_penalty_range: Optional[int] = Field(None, ge=0) diversity_penalty: float = Field(0.0, ge=0.0) num_beam_groups: int = Field(1, ge=1) return_dict_in_generate: bool = Field(False) output_attentions: bool = Field(False) output_hidden_states: bool = Field(False) output_scores: bool = Field(False) return_token_logprobs: bool = Field(False) return_text_from_sequence: bool = Field(True) length_normalization_factor: Optional[float] = Field(None) min_new_tokens: int = Field(0, ge=0) do_normalize_logits: bool = Field(False) return_generation_inputs: bool = Field(False) return_unused_generate_parameters: bool = Field(False) use_fast_tokenizer: bool = Field(True) model_kwargs: Optional[Dict[str, Any]] = Field(None) tokenizer_kwargs: Optional[Dict[str, Any]] = Field(None) return_only_text: bool = Field(False) @validator('stop_sequences') def validate_stop_sequences(cls, v): if v is not None: if not all(isinstance(seq, str) for seq in v): raise ValueError('Each stop sequence must be a string') return v @validator('bad_words_ids') def validate_bad_words_ids(cls, v): if v is not None: if not all(isinstance(word_id_list, list) and all(isinstance(token_id, int) for token_id in word_id_list) for word_id_list in v): raise ValueError('bad_words_ids must be a list of lists of integers') return v @validator('exponential_decay_length_penalty') def validate_exponential_decay_length_penalty(cls, v): if v is not None: if not (isinstance(v, (list, tuple)) and len(v) == 3 and isinstance(v[0], (int, float)) and v[0] > 0 and isinstance(v[1], int) and v[1] >= 0 and isinstance(v[2], (int, float))): raise ValueError('exponential_decay_length_penalty must be a tuple/list of 3 numbers (decay_factor, start_index, threshold)') return v def format_conversation(input_text: str, history: Optional[List[Dict[str, str]]], system_prompt: Optional[str]) -> str: full_history: List[Dict[str, str]] = [] used_system_prompt = system_prompt if system_prompt is not None else SYSTEM_PROMPT if not history or history[0].get("role") != "system" or history[0].get("content") != used_system_prompt: full_history.append({"role": "system", "content": used_system_prompt}) if history: full_history.extend(history) if not full_history or full_history[-1].get("role") != "user" or full_history[-1].get("content") != input_text: full_history.append({"role": "user", "content": input_text}) if global_tokenizer and hasattr(global_tokenizer, 'apply_chat_template') and global_tokenizer.chat_template: try: return global_tokenizer.apply_chat_template(full_history, tokenize=False, add_generation_prompt=True) except Exception as e: pass formatted_text = "" for i, message in enumerate(full_history): if i == 0 and message["role"] == "system" and len(full_history) > 1 and full_history[1].get("role") == "system": continue if message["role"] == "system": formatted_text += f"{message['content'].strip()}\n\n" elif message["role"] == "user": formatted_text += f"Usuario: {message['content'].strip()}\n" elif message["role"] == "assistant": formatted_text += f"Bot: {message['content'].strip()}\n" if not formatted_text.endswith("Bot:"): formatted_text += "Bot:" return formatted_text.strip() def truncate_encoded_ids(input_ids: torch.Tensor, max_length: int) -> torch.Tensor: if input_ids.shape[-1] > max_length: return input_ids[:, -max_length:] return input_ids def apply_seed(seed: Optional[int]): if seed is not None: torch.manual_seed(seed) random.seed(seed) def get_stopping_criteria(req: GenerateRequest, initial_ids: torch.Tensor, tokenizer: AutoTokenizer) -> StoppingCriteriaList: criteria = StoppingCriteriaList() max_len_from_req = None if req.max_length is not None and req.max_length > 0: max_len_from_req = req.max_length elif req.max_new_tokens is not None and req.max_new_tokens > 0: max_len_from_req = initial_ids.shape[-1] + req.max_new_tokens else: max_len_from_req = initial_ids.shape[-1] + MAX_GENERATION_TOKENS if max_len_from_req is not None and max_len_from_req > 0: criteria.append(MaxLengthCriteria(max_len_from_req)) if req.min_length is not None and req.min_length > 0: eos_token_id = req.eos_token_id_override if req.eos_token_id_override is not None else global_tokens.get("eos_token_id", -1) criteria.append(MinLengthLogitsProcessor(initial_ids.shape[-1] + req.min_length, eos_token_id)) if req.stop_sequences: criteria.append(StopSequenceCriteria(req.stop_sequences, tokenizer)) return criteria def generate_next_token_sync( input_ids, past_key_values, gen_cfg: GenerationConfig, device: str ) -> Tuple[torch.Tensor, Any, Optional[float], Optional[torch.Tensor], Any, Any]: with torch.no_grad(): outputs = global_model( input_ids, past_key_values=past_key_values, use_cache=gen_cfg.use_cache, return_dict=True, output_attentions=gen_cfg.output_attentions, output_hidden_states=gen_cfg.output_hidden_states, output_scores=gen_cfg.output_scores, ) logits = outputs.logits[:, -1, :] past = outputs.past_key_values scores = outputs.scores if gen_cfg.output_scores else None attentions = outputs.attentions if gen_cfg.output_attentions else None hidden_states = outputs.hidden_states if gen_cfg.output_hidden_states else None step_logits_for_criteria = logits.clone() if gen_cfg.do_normalize_logits: logits = F.log_softmax(logits, dim=-1) if gen_cfg.do_sample: if gen_cfg.use_mirostat_mode == 1 and hasattr(global_model, 'mirostat_sample_logits'): token = global_model.mirostat_sample_logits( logits=logits, temperature=gen_cfg.temperature, mirostat_tau=gen_cfg.mirostat_tau, mirostat_eta=gen_cfg.mirostat_eta ).unsqueeze(0).to(device) else: logits = logits / gen_cfg.temperature if gen_cfg.temperature_cutoff is not None and gen_cfg.temperature_cutoff > 0: logits = torch.where(logits < gen_cfg.temperature_cutoff, torch.tensor(-float('Inf')).to(logits.device), logits) if gen_cfg.top_k: topk_values, topk_indices = torch.topk(logits, gen_cfg.top_k) logits[logits < topk_values[:, -1]] = -float('Inf') if gen_cfg.top_p < 1.0: sorted_logits, sorted_indices = torch.sort(logits, dim=-1, descending=True) cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1) sorted_indices_to_remove = cumulative_probs > gen_cfg.top_p sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() sorted_indices_to_remove[..., 0] = False indices_to_remove = sorted_indices[sorted_indices_to_remove] logits[:, indices_to_remove] = -float('Inf') if gen_cfg.typical_p < 1.0: probs = torch.softmax(logits, dim=-1) entropy = torch.distributions.Categorical(probs).entropy() probs_sorted, indices_sorted = torch.sort(probs, dim=-1, descending=True) cumsum_probs_sorted = torch.cumsum(probs_sorted, dim=-1) mask = cumsum_probs_sorted < gen_cfg.typical_p * entropy.exp() indices_to_remove = indices_sorted[~mask] logits[:, indices_to_remove] = -float('Inf') if gen_cfg.epsilon_cutoff is not None and gen_cfg.epsilon_cutoff > 0: probs = torch.softmax(logits, dim=-1) mask = probs < gen_cfg.epsilon_cutoff logits[:, mask] = -float('Inf') if gen_cfg.eta_cutoff is not None and gen_cfg.eta_cutoff > 0: probs = torch.softmax(logits, dim=-1) mask = probs > gen_cfg.eta_cutoff logits[:, ~mask] = -float('Inf') probs = torch.softmax(logits, dim=-1) token = torch.multinomial(probs, 1) else: token = torch.argmax(logits, dim=-1, keepdim=True) token_logprob = None if gen_cfg.output_scores: log_probs = F.log_softmax(step_logits_for_criteria, dim=-1) if 0 <= token.squeeze().item() < log_probs.shape[-1]: token_logprob = float(log_probs[:, token.squeeze()].item()) else: token_logprob = None return token, past, token_logprob, step_logits_for_criteria, attentions, hidden_states def post_process_text(text: str, strip_trailing_whitespace: bool, remove_incomplete_sentences: bool) -> str: if strip_trailing_whitespace: text = text.rstrip() if remove_incomplete_sentences: for terminator in ['.', '!', '?', '\n']: last_terminator = text.rfind(terminator) if last_terminator != -1: text = text[:last_terminator + 1] break return text async def stream_generation_logic(req: GenerateRequest, initial_ids: torch.Tensor, gen_cfg: GenerationConfig, device: str) -> AsyncGenerator[Union[str, Tuple[Dict[str, Any], str]], None]: past = None generated_tokens_count = 0 eos_token_id = req.eos_token_id_override if req.eos_token_id_override is not None else global_tokens.get("eos_token_id") pad_token_id = req.pad_token_id_override if req.pad_token_id_override is not None else global_tokens.get("pad_token_id", eos_token_id) stop_token_ids = {eos_token_id} if eos_token_id is not None else set() if pad_token_id is not None and pad_token_id != eos_token_id: stop_token_ids.add(pad_token_id) current_ids = initial_ids start_time = time.time() total_ids_list = initial_ids.tolist()[0] finish_reason = "unknown" stopping_criteria = get_stopping_criteria(req, initial_ids, global_tokenizer) last_step_logits = None accumulated_text_for_processing = "" try: while True: if generated_tokens_count >= req.max_new_tokens: finish_reason = "max_new_tokens" break if req.max_time is not None and (time.time() - start_time) > req.max_time: finish_reason = "time" break input_ids_sync = current_ids if past is None else token token, past, token_logprob, step_logits, attentions, hidden_states = await asyncio.to_thread( generate_next_token_sync, input_ids_sync, past, gen_cfg, device ) last_step_logits = step_logits generated_token_id = token[0].item() total_ids_list.append(generated_token_id) text = global_tokenizer.decode([generated_token_id], skip_special_tokens=True) accumulated_text_for_processing += text if req.return_only_text: yield text else: chunk_payload: Dict[str, Any] = { "type": "token", "text": text, "token_id": generated_token_id, "generated_tokens_count": generated_tokens_count + 1, } if req.return_token_logprobs and token_logprob is not None: chunk_payload["logprob"] = token_logprob yield json.dumps(chunk_payload) + "\n" if generated_token_id in stop_token_ids: finish_reason = "eos_token" break current_full_ids_tensor = torch.tensor([total_ids_list], device=device) if stopping_criteria(current_full_ids_tensor, step_logits): finish_reason = "stopping_criteria" current_len = len(total_ids_list) initial_len = initial_ids.shape[-1] max_len_crit_met = any(isinstance(c, MaxLengthCriteria) for c in stopping_criteria) and \ ( (req.max_new_tokens is not None and current_len >= (initial_len + req.max_new_tokens)) or (req.max_length is not None and current_len >= req.max_length) ) stop_seq_crit_met = any(isinstance(c, StopSequenceCriteria) for c in stopping_criteria) and req.stop_sequences and \ any(seq in global_tokenizer.decode(total_ids_list[initial_len:], skip_special_tokens=True) for seq in req.stop_sequences) if max_len_crit_met: if req.max_new_tokens is not None and current_len >= (initial_len + req.max_new_tokens): finish_reason = "max_new_tokens" elif req.max_length is not None and current_len >= req.max_length: finish_reason = "max_length" if stop_seq_crit_met: finish_reason = "stop_sequence" break current_ids = token generated_tokens_count += 1 final_text_raw = global_tokenizer.decode(total_ids_list[initial_ids.shape[-1]:], skip_special_tokens=True) if req.stop_sequences and finish_reason == "stop_sequence": for stop_seq in req.stop_sequences: if stop_seq and stop_seq in final_text_raw: final_text_raw = final_text_raw.split(stop_seq, 1)[0] break final_text_processed = post_process_text(final_text_raw, req.strip_trailing_whitespace, req.remove_incomplete_sentences) if not req.return_only_text: final_payload: Dict[str, Any] = { "type": "done", "total_prompt_tokens": initial_ids.shape[-1], "total_generated_tokens": generated_tokens_count, "total_sequence_tokens": len(total_ids_list), "final_text": final_text_processed, "finish_reason": finish_reason } yield json.dumps(final_payload) + "\n" except Exception as e: if req.return_only_text: yield f"Error: {e}\n" else: error_payload = {"type": "error", "message": str(e)} yield json.dumps(error_payload) + "\n" finally: await cleanup() async def non_stream_generation_logic(req: GenerateRequest, initial_ids: torch.Tensor, gen_cfg: GenerationConfig, device: str) -> Dict[str, Any]: try: logits_processor_list = LogitsProcessorList() stopping_criteria_list = get_stopping_criteria(req, initial_ids, global_tokenizer) with torch.no_grad(): out = global_model.generate( input_ids=initial_ids, generation_config=gen_cfg, return_dict_in_generate=True, output_scores=req.output_scores, output_attentions=req.output_attentions, output_hidden_states=req.output_hidden_states, num_return_sequences=req.num_return_sequences, bad_words_ids=req.bad_words_ids, suppress_tokens=req.suppress_tokens, begin_suppress_tokens=req.begin_suppress_tokens, end_suppress_tokens=req.end_suppress_tokens, logits_processor=logits_processor_list if logits_processor_list else None, stopping_criteria=stopping_criteria_list if stopping_criteria_list else None, ) generated_data = [] for i in range(req.num_return_sequences): if i >= len(out.sequences): break sequence = out.sequences[i] start_index = initial_ids.shape[-1] generated_ids_tensor = sequence[start_index:] full_sequence_ids = sequence.tolist() text = global_tokenizer.decode(generated_ids_tensor, skip_special_tokens=True) if req.stop_sequences: for stop_seq in req.stop_sequences: if stop_seq and stop_seq in text: text = text.split(stop_seq, 1)[0] break text = post_process_text(text, req.strip_trailing_whitespace, req.remove_incomplete_sentences) finish_reason = "length" eos_token_id = req.eos_token_id_override if req.eos_token_id_override is not None else global_tokens.get("eos_token_id") if len(generated_ids_tensor) > 0 and eos_token_id is not None and generated_ids_tensor[-1] == eos_token_id: finish_reason = "eos_token" elif len(generated_ids_tensor) >= gen_cfg.max_new_tokens: finish_reason = "max_new_tokens" elif req.max_length is not None and len(full_sequence_ids) >= req.max_length: finish_reason = "max_length" elif hasattr(out, 'max_time_exceeded') and out.max_time_exceeded: finish_reason = "time" if req.stop_sequences and finish_reason == "length": decoded_full_output = global_tokenizer.decode(full_sequence_ids, skip_special_tokens=True) if any(seq in decoded_full_output for seq in req.stop_sequences): finish_reason = "stop_sequence" item_data: Dict[str, Any] = { "text": text if req.return_text_from_sequence else None, "token_ids": generated_ids_tensor.tolist(), "generated_tokens_count": len(generated_ids_tensor), "finish_reason": finish_reason } if not req.remove_input_from_output: item_data["full_sequence_token_ids"] = full_sequence_ids if req.output_scores and hasattr(out, 'scores') and out.scores is not None: item_data["scores"] = "Scores output needs custom handling (complex structure)." if req.return_token_logprobs: item_data["token_logprobs"] = "Token logprobs require parsing scores output which is complex for batched/beamed generation." if req.output_attentions and hasattr(out, 'attentions') and out.attentions is not None: item_data["attentions"] = "Attentions output needs custom handling (too large)." if req.output_hidden_states and hasattr(out, 'hidden_states') and out.hidden_states is not None: item_data["hidden_states"] = "Hidden states output needs custom handling (too large)." if hasattr(out, 'watermark') and out.watermark is not None: item_data["watermark"] = out.watermark[i] if isinstance(out.watermark, list) and len(out.watermark) > i else out.watermark generated_data.append(item_data) response_payload: Dict[str, Any] = { "prompt_tokens": initial_ids.shape[-1], "generated_sequences": generated_data, } if req.num_return_sequences == 1 and generated_data: response_payload["total_tokens"] = response_payload["prompt_tokens"] + generated_data[0]["generated_tokens_count"] if req.return_dict_in_generate: raw_out_dict = {} for key in out.keys(): if key not in ['sequences', 'scores', 'attentions', 'hidden_states', 'past_key_values', 'watermark', 'sequences_scores']: value = out[key] if isinstance(value, torch.Tensor): raw_out_dict[key] = value.tolist() else: raw_out_dict[key] = value response_payload["raw_generate_output"] = raw_out_dict return response_payload except Exception as e: raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=f"Generation error: {e}") async def cleanup(): gc.collect() @app.on_event("startup") async def load_model(): global global_model, global_tokenizer, global_tokens, MODEL_NAME, TRUST_REMOTE_CODE, TORCH_DTYPE torch.set_num_threads(max(1, os.cpu_count() // 2)) torch.set_num_interop_threads(max(1, os.cpu_count() // 4)) device = "cpu" current_model_name = MODEL_NAME current_trust_remote_code = TRUST_REMOTE_CODE try: config = AutoConfig.from_pretrained(current_model_name, trust_remote_code=current_trust_remote_code) original_config = copy.deepcopy(config) if hasattr(config, 'bos_token_id'): config.bos_token_id = 1 if hasattr(config, 'eos_token_id'): config.eos_token_id = 2 if hasattr(config, 'max_position_embeddings'): config.max_position_embeddings = MAX_CONTEXT_TOKENS if hasattr(config, 'n_positions'): config.n_positions = MAX_CONTEXT_TOKENS if hasattr(config, 'seq_len'): config.seq_len = MAX_CONTEXT_TOKENS if hasattr(config, 'ctx'): config.ctx = MAX_CONTEXT_TOKENS if hasattr(config, 'n_ctx'): config.n_ctx = MAX_CONTEXT_TOKENS if hasattr(config, 'max_seq_length'): config.max_seq_length = MAX_CONTEXT_TOKENS if hasattr(config, 'max_sequence_length'): config.max_sequence_length = MAX_CONTEXT_TOKENS if hasattr(config, 'max_length'): config.max_length = MAX_CONTEXT_TOKENS if hasattr(config, 'block_size'): config.block_size = MAX_CONTEXT_TOKENS if hasattr(config, 'use_cache'): config.use_cache = False if hasattr(config, 'tie_word_embeddings'): config.tie_word_embeddings = True if hasattr(config, 'output_attentions'): config.output_attentions = False if hasattr(config, 'output_hidden_states'): config.output_hidden_states = False if hasattr(config, 'use_cache'): config.use_cache = False tokenizer_kwargs = {"config": original_config, "trust_remote_code": current_trust_remote_code} global_tokenizer = AutoTokenizer.from_pretrained(current_model_name, **tokenizer_kwargs) model_kwargs = {"config": config, "torch_dtype": TORCH_DTYPE, "trust_remote_code": current_trust_remote_code} global_model = AutoModelForCausalLM.from_pretrained(current_model_name, **model_kwargs) global_model.to(device) global_model.eval() global_tokens["eos_token_id"] = global_tokenizer.eos_token_id global_tokens["pad_token_id"] = global_tokenizer.pad_token_id if global_tokens["pad_token_id"] is None and global_tokens["eos_token_id"] is not None: global_tokens["pad_token_id"] = global_tokens["eos_token_id"] if global_model.config.pad_token_id is None: global_model.config.pad_token_id = global_tokens["pad_token_id"] elif global_tokens["pad_token_id"] is None and global_tokens["eos_token_id"] is None: pass if global_model.config.pad_token_id is None and global_tokens.get("pad_token_id") is not None: global_model.config.pad_token_id = global_tokens["pad_token_id"] except Exception as e: global_model = None global_tokenizer = None global_tokens = {} html_code = """