File size: 75,236 Bytes
499dbc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 |
import os
import gc
import json
import random
import torch
import asyncio
import logging
import time
from typing import List, Dict, Any, Optional, Union, AsyncGenerator, Tuple
from fastapi import FastAPI, HTTPException, Query, Request, Depends, status
from fastapi.responses import StreamingResponse, PlainTextResponse, HTMLResponse, JSONResponse
from fastapi.security import APIKeyHeader
from pydantic import BaseModel, Field, ValidationError, validator
from transformers import (
AutoConfig, AutoModelForCausalLM, AutoTokenizer,
GenerationConfig, LogitsProcessorList,
MinLengthLogitsProcessor, MaxLengthCriteria,
StoppingCriteriaList, StoppingCriteria
)
import uvicorn
from concurrent.futures import ThreadPoolExecutor
import math
import torch.nn.functional as F
import copy
app = FastAPI(title="Chatbot Profesional API", version="1.0.0")
class StopSequenceCriteria(StoppingCriteria):
def __init__(self, stop_sequences: List[str], tokenizer: AutoTokenizer):
self.tokenizer = tokenizer
self.stop_sequences_text = []
self.stop_sequence_ids = []
for seq in stop_sequences:
if seq:
encoded_ids = tokenizer.encode(seq, add_special_tokens=False)
decoded_text = tokenizer.decode(encoded_ids, skip_special_tokens=True)
if decoded_text:
self.stop_sequences_text.append(decoded_text)
self.stop_sequence_ids.append(encoded_ids)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
if not self.stop_sequence_ids:
return False
input_ids_list = input_ids[0].tolist()
for stop_seq_ids in self.stop_sequence_ids:
stop_len = len(stop_seq_ids)
if len(input_ids_list) >= stop_len:
if input_ids_list[-stop_len:] == stop_seq_ids:
return True
check_tail_len = 50
if self.stop_sequence_ids:
max_stop_seq_token_len = max((len(seq) for seq in self.stop_sequence_ids), default=0)
check_tail_len = max(check_tail_len, max_stop_seq_token_len + 10)
tail_ids = input_ids_list[-min(check_tail_len, len(input_ids_list)):]
tail_text = self.tokenizer.decode(tail_ids, skip_special_tokens=True)
for stop_seq_text in self.stop_sequences_text:
if stop_seq_text and stop_seq_text in tail_text:
return True
return False
logging.getLogger("uvicorn").handlers.clear()
logging.getLogger("uvicorn.error").handlers.clear()
logging.getLogger("uvicorn.access").handlers.clear()
logging.getLogger("uvicorn").propagate = False
logging.getLogger("uvicorn.error").propagate = False
logging.getLogger("uvicorn.access").propagate = False
logging.getLogger("uvicorn").setLevel(logging.CRITICAL)
logging.getLogger("uvicorn.error").setLevel(logging.CRITICAL)
logging.getLogger("uvicorn.access").setLevel(logging.CRITICAL)
logging.getLogger("fastapi").setLevel(logging.CRITICAL)
logging.getLogger("transformers").setLevel(logging.CRITICAL)
logging.getLogger().handlers.clear()
logging.getLogger().addHandler(logging.NullHandler())
DEFAULT_MODEL_NAME = "hghghgkskdmskdms/xddd"
MODEL_NAME = os.environ.get("MODEL_NAME", DEFAULT_MODEL_NAME)
SYSTEM_PROMPT = os.environ.get("SYSTEM_PROMPT", "Eres un asistente profesional y servicial.")
try:
MAX_CONTEXT_TOKENS = int(os.environ.get("MAX_CONTEXT_TOKENS", 1024))
if MAX_CONTEXT_TOKENS <= 0:
raise ValueError("MAX_CONTEXT_TOKENS must be positive.")
except (ValueError, TypeError) as e:
logging.error(f"Invalid MAX_CONTEXT_TOKENS environment variable: {os.environ.get('MAX_CONTEXT_TOKENS')}. Using default 1024. Error: {e}")
MAX_CONTEXT_TOKENS = 1024
try:
MAX_GENERATION_TOKENS = int(os.environ.get("MAX_GENERATION_TOKENS", 512))
if MAX_GENERATION_TOKENS <= 0:
raise ValueError("MAX_GENERATION_TOKENS must be positive.")
except (ValueError, TypeError) as e:
logging.error(f"Invalid MAX_GENERATION_TOKENS environment variable: {os.environ.get('MAX_GENERATION_TOKENS')}. Using default 512. Error: {e}")
MAX_GENERATION_TOKENS = 512
try:
MAX_CONCURRENT_GENERATIONS = int(os.environ.get("MAX_CONCURRENT_GENERATIONS", 4))
if MAX_CONCURRENT_GENERATIONS <= 0:
raise ValueError("MAX_CONCURRENT_GENERATIONS must be positive.")
except (ValueError, TypeError) as e:
logging.error(f"Invalid MAX_CONCURRENT_GENERATIONS environment variable: {os.environ.get('MAX_CONCURRENT_GENERATIONS')}. Using default 4. Error: {e}")
MAX_CONCURRENT_GENERATIONS = 4
TRUST_REMOTE_CODE_ENV = os.environ.get("TRUST_REMOTE_CODE", "false").lower() == "true"
TRUST_REMOTE_CODE = TRUST_REMOTE_CODE_ENV or (MODEL_NAME == DEFAULT_MODEL_NAME)
ENABLE_FLASH_ATTENTION_2 = os.environ.get("ENABLE_FLASH_ATTENTION_2", "false").lower() == "true"
TORCH_DTYPE_STR = os.environ.get("TORCH_DTYPE", "float32")
TORCH_DTYPE = getattr(torch, TORCH_DTYPE_STR.lower(), torch.float32)
if TORCH_DTYPE != torch.float32:
logging.warning(f"Requested dtype {TORCH_DTYPE_STR} might not be fully performant on CPU. Using float32.")
TORCH_DTYPE = torch.float32
API_KEY = os.environ.get("API_KEY")
global_model = None
global_tokenizer = None
global_tokens: Dict[str, Optional[int]] = {}
executor = ThreadPoolExecutor(max_workers=MAX_CONCURRENT_GENERATIONS)
generation_semaphore = asyncio.Semaphore(MAX_CONCURRENT_GENERATIONS)
api_key_header = APIKeyHeader(name="X-API-Key", auto_error=False)
async def get_api_key(api_key: str = Depends(api_key_header)):
if API_KEY is None:
return
if api_key is None or api_key != API_KEY:
raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid or missing API Key")
return api_key
class GenerateRequest(BaseModel):
input_text: str = Field(..., description="The input text from the user.", examples=["Hola, ¿cómo estás?"])
history: Optional[List[Dict[str, str]]] = Field(None, description="Conversation history.", examples=[[{"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "What is the capital of France?"}, {"role": "assistant", "content": "The capital of France is Paris."}]])
stream: bool = Field(True, description="Whether to stream the response.")
temperature: float = Field(1.0, ge=0.0, le=2.0, description="Controls the randomness.")
top_k: int = Field(50, ge=0, description="Top-k filtering.")
top_p: float = Field(1.0, ge=0.0, le=1.0, description="Top-p (nucleus) filtering.")
repetition_penalty: float = Field(1.0, ge=0.0, description="Repetition penalty.")
frequency_penalty: float = Field(0.0, ge=0.0, description="Frequency penalty.")
presence_penalty: float = Field(0.0, ge=0.0, description="Presence penalty.")
num_beams: int = Field(1, ge=1, description="Number of beams for beam search.")
length_penalty: float = Field(1.0, ge=0.0, description="Length penalty.")
no_repeat_ngram_size: int = Field(0, ge=0, description="No repeat ngram size.")
early_stopping: bool = Field(False, description="Early stopping for beam search.")
do_sample: bool = Field(True, description="Whether to use sampling.")
use_mirostat: bool = Field(False, description="Whether to use Mirostat sampling.")
mirostat_tau: float = Field(5.0, ge=0.0, description="Mirostat tau.")
mirostat_eta: float = Field(0.1, ge=0.0, description="Mirostat eta.")
max_new_tokens: int = Field(MAX_GENERATION_TOKENS, ge=1, description="Max new tokens.")
system_prompt: Optional[str] = Field(None, description="Override the default system prompt.")
seed: Optional[int] = Field(None, description="Random seed.")
stop_sequences: Optional[List[str]] = Field(None, description="List of stop strings.", examples=[[".", "\nUsuario:"]])
tokenize_only: bool = Field(False, description="If true, only tokenize input.")
strip_trailing_whitespace: bool = Field(False, description="Strip trailing whitespace.")
remove_incomplete_sentences: bool = Field(False, description="Remove incomplete last sentence.")
num_return_sequences: int = Field(1, ge=1, le=5, description="Number of sequences to return (non-streaming).")
bad_words_ids: Optional[List[List[int]]] = Field(None, description="List of bad word token ids.", examples=[[[32000], [32001]]])
forced_bos_token_id: Optional[int] = Field(None, description="Forced BOS token id.")
forced_eos_token_id: Optional[int] = Field(None, description="Forced EOS token id.")
renormalize_logits: Optional[bool] = Field(None, description="Renormalize logits.")
suppress_tokens: Optional[List[int]] = Field(None, description="Tokens to suppress.")
begin_suppress_tokens: Optional[List[int]] = Field(None, description="Tokens to suppress at beginning.")
end_suppress_tokens: Optional[List[int]] = Field(None, description="Tokens to suppress at end.")
encoder_no_repeat_ngram_size: int = Field(0, ge=0, description="Encoder no repeat ngram size.")
min_length: int = Field(0, ge=0, description="Minimum total length.")
max_length: Optional[int] = Field(None, description="Maximum total length.")
exponential_decay_length_penalty: Optional[Tuple[float, int, float]] = Field(None, description="Exponential decay length penalty.")
use_cache: bool = Field(True, description="Use cache.")
typical_p: float = Field(1.0, ge=0.0, le=1.0, description="Typical P sampling.")
epsilon_cutoff: float = Field(0.0, ge=0.0, description="Epsilon cutoff for LTS.")
eta_cutoff: float = Field(0.0, ge=0.0, description="Eta cutoff for LTS.")
temperature_cutoff: Optional[float] = Field(None, ge=0.0, description="Temperature cutoff.")
encoder_repetition_penalty: float = Field(1.0, ge=0.0, description="Encoder repetition penalty.")
max_time: Optional[float] = Field(None, ge=0.0, description="Maximum time in seconds.")
output_watermark: bool = Field(False, description="Output watermark.")
remove_input_from_output: bool = Field(False, description="Remove input from output.")
eos_token_id_override: Optional[int] = Field(None, description="Override EOS token id.")
pad_token_id_override: Optional[int] = Field(None, description="Override PAD token id.")
bos_token_id_override: Optional[int] = Field(None, description="Override BOS token id.")
repetition_penalty_range: Optional[int] = Field(None, ge=0, description="Repetition penalty range.")
diversity_penalty: float = Field(0.0, ge=0.0, description="Diversity penalty for diverse beam search.")
num_beam_groups: int = Field(1, ge=1, description="Number of beam groups for diverse beam search.")
return_dict_in_generate: bool = Field(False, description="Return dictionary from generate.")
output_attentions: bool = Field(False, description="Output attentions.")
output_hidden_states: bool = Field(False, description="Output hidden states.")
output_scores: bool = Field(False, description="Output scores.")
return_token_logprobs: bool = Field(False, description="Return token logprobs in stream.")
return_text_from_sequence: bool = Field(True, description="Decode generated sequence to text.")
length_normalization_factor: Optional[float] = Field(None, description="Length normalization factor for beam search.")
min_new_tokens: int = Field(0, ge=0, description="Minimum number of new tokens.")
do_normalize_logits: bool = Field(False, description="Normalize logits.")
return_generation_inputs: bool = Field(False, description="Return generation inputs.")
return_unused_generate_parameters: bool = Field(False, description="Return unused generate parameters.")
use_fast_tokenizer: bool = Field(True, description="Use fast tokenizer if available.")
model_kwargs: Optional[Dict[str, Any]] = Field(None, description="Additional model kwargs for generate.")
tokenizer_kwargs: Optional[Dict[str, Any]] = Field(None, description="Additional tokenizer kwargs for encode.")
return_only_text: bool = Field(False, description="If true, only return the generated text.")
@validator('stop_sequences')
def validate_stop_sequences(cls, v):
if v is not None:
if not all(isinstance(seq, str) for seq in v):
raise ValueError('Each stop sequence must be a string')
return v
@validator('bad_words_ids')
def validate_bad_words_ids(cls, v):
if v is not None:
if not all(isinstance(word_id_list, list) and all(isinstance(token_id, int) for token_id in word_id_list) for word_id_list in v):
raise ValueError('bad_words_ids must be a list of lists of integers')
return v
@validator('exponential_decay_length_penalty')
def validate_exponential_decay_length_penalty(cls, v):
if v is not None:
if not (isinstance(v, (list, tuple)) and len(v) == 3 and
isinstance(v[0], (int, float)) and v[0] > 0 and
isinstance(v[1], int) and v[1] >= 0 and
isinstance(v[2], (int, float))):
raise ValueError('exponential_decay_length_penalty must be a tuple/list of 3 numbers (decay_factor, start_index, threshold)')
return v
class TokenizeRequest(BaseModel):
text: Union[str, List[str]] = Field(..., description="Text or list of texts to tokenize.")
add_special_tokens: bool = Field(True, description="Whether to add special tokens.")
is_split_into_words: bool = Field(False, description="Whether the input text is pre-tokenized.")
return_token_type_ids: bool = Field(False, description="Whether to return token type IDs.")
padding: Union[bool, str] = Field(False, description="Enable padding.")
truncation: Union[bool, str] = Field(False, description="Enable truncation.")
max_length: Optional[int] = Field(None, ge=1, description="Maximum length for padding and truncation.")
return_tensors: Optional[str] = Field(None, description="The type of tensors to return.")
return_attention_mask: Optional[bool] = Field(None, description="Whether to return the attention mask.")
return_offsets_mapping: Optional[bool] = Field(None, description="Whether to return offsets mapping.")
return_length: Optional[bool] = Field(None, description="Whether to return the length.")
verbose: bool = Field(False, description="Verbose tokenizer output.")
tokenizer_kwargs: Optional[Dict[str, Any]] = Field(None, description="Additional tokenizer kwargs.")
class DecodeRequest(BaseModel):
token_ids: List[int] = Field(..., description="List of token IDs to decode.", examples=[[1, 2, 3]])
skip_special_tokens: bool = Field(True, description="Skip special tokens.")
clean_up_tokenization_spaces: bool = Field(True, description="Clean up spaces.")
decode_kwargs: Optional[Dict[str, Any]] = Field(None, description="Additional decode kwargs.")
class SystemPromptUpdateRequest(BaseModel):
system_prompt: str = Field(..., description="The new global system prompt.")
class ModelReloadRequest(BaseModel):
model_name: Optional[str] = Field(None, description="New model name.")
trust_remote_code: Optional[bool] = Field(None, description="Override trust_remote_code.")
enable_flash_attention_2: Optional[bool] = Field(None, description="Override enable_flash_attention_2.")
torch_dtype: Optional[str] = Field(None, description="Override torch_dtype.")
model_kwargs: Optional[Dict[str, Any]] = Field(None, description="Additional model kwargs for from_pretrained().")
tokenizer_kwargs: Optional[Dict[str, Any]] = Field(None, description="Additional tokenizer kwargs for from_pretrained().")
def format_conversation(input_text: str, history: Optional[List[Dict[str, str]]], system_prompt: Optional[str]) -> str:
full_history: List[Dict[str, str]] = []
used_system_prompt = system_prompt if system_prompt is not None else SYSTEM_PROMPT
if not history or history[0].get("role") != "system" or history[0].get("content") != used_system_prompt:
full_history.append({"role": "system", "content": used_system_prompt})
if history:
full_history.extend(history)
if not full_history or full_history[-1].get("role") != "user" or full_history[-1].get("content") != input_text:
full_history.append({"role": "user", "content": input_text})
if global_tokenizer and hasattr(global_tokenizer, 'apply_chat_template') and global_tokenizer.chat_template:
try:
return global_tokenizer.apply_chat_template(full_history, tokenize=False, add_generation_prompt=True)
except Exception as e:
logging.error(f"Failed to apply chat template: {e}. Falling back to manual formatting.")
pass
formatted_text = ""
for i, message in enumerate(full_history):
if i == 0 and message["role"] == "system" and len(full_history) > 1 and full_history[1].get("role") == "system":
continue
if message["role"] == "system":
formatted_text += f"{message['content'].strip()}\n\n"
elif message["role"] == "user":
formatted_text += f"Usuario: {message['content'].strip()}\n"
elif message["role"] == "assistant":
formatted_text += f"Bot: {message['content'].strip()}\n"
if not formatted_text.endswith("Bot:"):
formatted_text += "Bot:"
return formatted_text.strip()
def truncate_encoded_ids(input_ids: torch.Tensor, max_length: int) -> torch.Tensor:
if input_ids.shape[-1] > max_length:
return input_ids[:, -max_length:]
return input_ids
def apply_seed(seed: Optional[int]):
if seed is not None:
torch.manual_seed(seed)
random.seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
def get_stopping_criteria(req: GenerateRequest, initial_ids: torch.Tensor, tokenizer: AutoTokenizer) -> StoppingCriteriaList:
criteria = StoppingCriteriaList()
max_len_from_req = None
if req.max_length is not None and req.max_length > 0:
max_len_from_req = req.max_length
elif req.max_new_tokens is not None and req.max_new_tokens > 0:
max_len_from_req = initial_ids.shape[-1] + req.max_new_tokens
else:
max_len_from_req = initial_ids.shape[-1] + MAX_GENERATION_TOKENS
if max_len_from_req is not None and max_len_from_req > 0:
criteria.append(MaxLengthCriteria(max_len_from_req))
if req.min_length is not None and req.min_length > 0:
eos_token_id = req.eos_token_id_override if req.eos_token_id_override is not None else global_tokens.get("eos_token_id", -1)
criteria.append(MinLengthLogitsProcessor(initial_ids.shape[-1] + req.min_length, eos_token_id))
if req.stop_sequences:
criteria.append(StopSequenceCriteria(req.stop_sequences, tokenizer))
return criteria
def generate_next_token_sync(
input_ids,
past_key_values,
gen_cfg: GenerationConfig,
device: str
) -> Tuple[torch.Tensor, Any, Optional[float], Optional[torch.Tensor], Any, Any]:
with torch.no_grad():
outputs = global_model(
input_ids, past_key_values=past_key_values,
use_cache=gen_cfg.use_cache, return_dict=True,
output_attentions=gen_cfg.output_attentions,
output_hidden_states=gen_cfg.output_hidden_states,
output_scores=gen_cfg.output_scores,
)
logits = outputs.logits[:, -1, :]
past = outputs.past_key_values
scores = outputs.scores if gen_cfg.output_scores else None
attentions = outputs.attentions if gen_cfg.output_attentions else None
hidden_states = outputs.hidden_states if gen_cfg.output_hidden_states else None
step_logits_for_criteria = logits.clone()
if gen_cfg.do_normalize_logits:
logits = F.log_softmax(logits, dim=-1)
if gen_cfg.do_sample:
if gen_cfg.use_mirostat_mode == 1 and hasattr(global_model, 'mirostat_sample_logits'):
token = global_model.mirostat_sample_logits(
logits=logits,
temperature=gen_cfg.temperature,
mirostat_tau=gen_cfg.mirostat_tau,
mirostat_eta=gen_cfg.mirostat_eta
).unsqueeze(0).to(device)
else:
logits = logits / gen_cfg.temperature
if gen_cfg.temperature_cutoff is not None and gen_cfg.temperature_cutoff > 0:
logits = torch.where(logits < gen_cfg.temperature_cutoff, torch.tensor(-float('Inf')).to(logits.device), logits)
if gen_cfg.top_k:
topk_values, topk_indices = torch.topk(logits, gen_cfg.top_k)
logits[logits < topk_values[:, -1]] = -float('Inf')
if gen_cfg.top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, dim=-1, descending=True)
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > gen_cfg.top_p
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = False
indices_to_remove = sorted_indices[sorted_indices_to_remove]
logits[:, indices_to_remove] = -float('Inf')
if gen_cfg.typical_p < 1.0:
probs = torch.softmax(logits, dim=-1)
entropy = torch.distributions.Categorical(probs).entropy()
probs_sorted, indices_sorted = torch.sort(probs, dim=-1, descending=True)
cumsum_probs_sorted = torch.cumsum(probs_sorted, dim=-1)
mask = cumsum_probs_sorted < gen_cfg.typical_p * entropy.exp()
indices_to_remove = indices_sorted[~mask]
logits[:, indices_to_remove] = -float('Inf')
if gen_cfg.epsilon_cutoff is not None and gen_cfg.epsilon_cutoff > 0:
probs = torch.softmax(logits, dim=-1)
mask = probs < gen_cfg.epsilon_cutoff
logits[:, mask] = -float('Inf')
if gen_cfg.eta_cutoff is not None and gen_cfg.eta_cutoff > 0:
probs = torch.softmax(logits, dim=-1)
mask = probs > gen_cfg.eta_cutoff
logits[:, ~mask] = -float('Inf')
probs = torch.softmax(logits, dim=-1)
token = torch.multinomial(probs, 1)
else:
token = torch.argmax(logits, dim=-1, keepdim=True)
token_logprob = None
if gen_cfg.output_scores:
log_probs = F.log_softmax(step_logits_for_criteria, dim=-1)
if 0 <= token.squeeze().item() < log_probs.shape[-1]:
token_logprob = float(log_probs[:, token.squeeze()].item())
else:
token_logprob = None
return token, past, token_logprob, step_logits_for_criteria, attentions, hidden_states
def post_process_text(text: str, strip_trailing_whitespace: bool, remove_incomplete_sentences: bool) -> str:
if strip_trailing_whitespace:
text = text.rstrip()
if remove_incomplete_sentences:
for terminator in ['.', '!', '?', '\n']:
last_terminator = text.rfind(terminator)
if last_terminator != -1:
text = text[:last_terminator + 1]
break
return text
async def stream_generation_logic(req: GenerateRequest, initial_ids: torch.Tensor, gen_cfg: GenerationConfig, device: str) -> AsyncGenerator[Union[str, Tuple[Dict[str, Any], str]], None]:
past = None
generated_tokens_count = 0
eos_token_id = req.eos_token_id_override if req.eos_token_id_override is not None else global_tokens.get("eos_token_id")
pad_token_id = req.pad_token_id_override if req.pad_token_id_override is not None else global_tokens.get("pad_token_id", eos_token_id)
stop_token_ids = {eos_token_id} if eos_token_id is not None else set()
if pad_token_id is not None and pad_token_id != eos_token_id:
stop_token_ids.add(pad_token_id)
current_ids = initial_ids
start_time = time.time()
total_ids_list = initial_ids.tolist()[0]
finish_reason = "unknown"
stopping_criteria = get_stopping_criteria(req, initial_ids, global_tokenizer)
last_step_logits = None
accumulated_text_for_processing = ""
try:
while True:
if generated_tokens_count >= req.max_new_tokens:
finish_reason = "max_new_tokens"
break
if req.max_time is not None and (time.time() - start_time) > req.max_time:
finish_reason = "time"
break
input_ids_sync = current_ids if past is None else token
token, past, token_logprob, step_logits, attentions, hidden_states = await asyncio.to_thread(
generate_next_token_sync,
input_ids_sync,
past,
gen_cfg,
device
)
last_step_logits = step_logits
generated_token_id = token[0].item()
total_ids_list.append(generated_token_id)
text = global_tokenizer.decode([generated_token_id], skip_special_tokens=True)
accumulated_text_for_processing += text
if req.return_only_text:
yield text
else:
chunk_payload: Dict[str, Any] = {
"type": "token",
"text": text,
"token_id": generated_token_id,
"generated_tokens_count": generated_tokens_count + 1,
}
if req.return_token_logprobs and token_logprob is not None:
chunk_payload["logprob"] = token_logprob
yield json.dumps(chunk_payload) + "\n"
if generated_token_id in stop_token_ids:
finish_reason = "eos_token"
break
current_full_ids_tensor = torch.tensor([total_ids_list], device=device)
if stopping_criteria(current_full_ids_tensor, step_logits):
finish_reason = "stopping_criteria"
current_len = len(total_ids_list)
initial_len = initial_ids.shape[-1]
max_len_crit_met = any(isinstance(c, MaxLengthCriteria) for c in stopping_criteria) and \
( (req.max_new_tokens is not None and current_len >= (initial_len + req.max_new_tokens)) or
(req.max_length is not None and current_len >= req.max_length) )
stop_seq_crit_met = any(isinstance(c, StopSequenceCriteria) for c in stopping_criteria) and req.stop_sequences and \
any(seq in global_tokenizer.decode(total_ids_list[initial_len:], skip_special_tokens=True) for seq in req.stop_sequences)
if max_len_crit_met:
if req.max_new_tokens is not None and current_len >= (initial_len + req.max_new_tokens):
finish_reason = "max_new_tokens"
elif req.max_length is not None and current_len >= req.max_length:
finish_reason = "max_length"
if stop_seq_crit_met:
finish_reason = "stop_sequence"
break
current_ids = token
generated_tokens_count += 1
final_text_raw = global_tokenizer.decode(total_ids_list[initial_ids.shape[-1]:], skip_special_tokens=True)
if req.stop_sequences and finish_reason == "stop_sequence":
for stop_seq in req.stop_sequences:
if stop_seq and stop_seq in final_text_raw:
final_text_raw = final_text_raw.split(stop_seq, 1)[0]
break
final_text_processed = post_process_text(final_text_raw, req.strip_trailing_whitespace, req.remove_incomplete_sentences)
if not req.return_only_text:
final_payload: Dict[str, Any] = {
"type": "done",
"total_prompt_tokens": initial_ids.shape[-1],
"total_generated_tokens": generated_tokens_count,
"total_sequence_tokens": len(total_ids_list),
"final_text": final_text_processed,
"finish_reason": finish_reason
}
yield json.dumps(final_payload) + "\n"
except Exception as e:
logging.exception("Streaming generation error:")
if req.return_only_text:
yield f"Error: {e}\n"
else:
error_payload = {"type": "error", "message": str(e)}
yield json.dumps(error_payload) + "\n"
finally:
await cleanup(device)
async def non_stream_generation_logic(req: GenerateRequest, initial_ids: torch.Tensor, gen_cfg: GenerationConfig, device: str) -> Dict[str, Any]:
try:
logits_processor_list = LogitsProcessorList()
stopping_criteria_list = get_stopping_criteria(req, initial_ids, global_tokenizer)
with torch.no_grad():
out = global_model.generate(
input_ids=initial_ids,
generation_config=gen_cfg,
return_dict_in_generate=True,
output_scores=req.output_scores,
output_attentions=req.output_attentions,
output_hidden_states=req.output_hidden_states,
num_return_sequences=req.num_return_sequences,
bad_words_ids=req.bad_words_ids,
suppress_tokens=req.suppress_tokens,
begin_suppress_tokens=req.begin_suppress_tokens,
end_suppress_tokens=req.end_suppress_tokens,
logits_processor=logits_processor_list if logits_processor_list else None,
stopping_criteria=stopping_criteria_list if stopping_criteria_list else None,
)
generated_data = []
for i in range(req.num_return_sequences):
if i >= len(out.sequences):
break
sequence = out.sequences[i]
start_index = initial_ids.shape[-1]
generated_ids_tensor = sequence[start_index:]
full_sequence_ids = sequence.tolist()
text = global_tokenizer.decode(generated_ids_tensor, skip_special_tokens=True)
if req.stop_sequences:
for stop_seq in req.stop_sequences:
if stop_seq and stop_seq in text:
text = text.split(stop_seq, 1)[0]
break
text = post_process_text(text, req.strip_trailing_whitespace, req.remove_incomplete_sentences)
finish_reason = "length"
eos_token_id = req.eos_token_id_override if req.eos_token_id_override is not None else global_tokens.get("eos_token_id")
if len(generated_ids_tensor) > 0 and eos_token_id is not None and generated_ids_tensor[-1] == eos_token_id:
finish_reason = "eos_token"
elif len(generated_ids_tensor) >= gen_cfg.max_new_tokens:
finish_reason = "max_new_tokens"
elif req.max_length is not None and len(full_sequence_ids) >= req.max_length:
finish_reason = "max_length"
elif hasattr(out, 'max_time_exceeded') and out.max_time_exceeded:
finish_reason = "time"
if req.stop_sequences and finish_reason == "length":
decoded_full_output = global_tokenizer.decode(full_sequence_ids, skip_special_tokens=True)
if any(seq in decoded_full_output for seq in req.stop_sequences):
finish_reason = "stop_sequence"
item_data: Dict[str, Any] = {
"text": text if req.return_text_from_sequence else None,
"token_ids": generated_ids_tensor.tolist(),
"generated_tokens_count": len(generated_ids_tensor),
"finish_reason": finish_reason
}
if not req.remove_input_from_output:
item_data["full_sequence_token_ids"] = full_sequence_ids
if req.output_scores and hasattr(out, 'scores') and out.scores is not None:
item_data["scores"] = "Scores output needs custom handling (complex structure)."
if req.return_token_logprobs:
item_data["token_logprobs"] = "Token logprobs require parsing scores output which is complex for batched/beamed generation."
if req.output_attentions and hasattr(out, 'attentions') and out.attentions is not None:
item_data["attentions"] = "Attentions output needs custom handling (too large)."
if req.output_hidden_states and hasattr(out, 'hidden_states') and out.hidden_states is not None:
item_data["hidden_states"] = "Hidden states output needs custom handling (too large)."
if hasattr(out, 'watermark') and out.watermark is not None:
item_data["watermark"] = out.watermark[i] if isinstance(out.watermark, list) and len(out.watermark) > i else out.watermark
generated_data.append(item_data)
response_payload: Dict[str, Any] = {
"prompt_tokens": initial_ids.shape[-1],
"generated_sequences": generated_data,
}
if req.num_return_sequences == 1 and generated_data:
response_payload["total_tokens"] = response_payload["prompt_tokens"] + generated_data[0]["generated_tokens_count"]
if req.return_dict_in_generate:
raw_out_dict = {}
for key in out.keys():
if key not in ['sequences', 'scores', 'attentions', 'hidden_states', 'past_key_values', 'watermark', 'sequences_scores']:
value = out[key]
if isinstance(value, torch.Tensor):
raw_out_dict[key] = value.tolist()
else:
raw_out_dict[key] = value
response_payload["raw_generate_output"] = raw_out_dict
return response_payload
except Exception as e:
logging.exception("Non-streaming generation error:")
raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=f"Generation error: {e}")
async def cleanup(device: str):
if device == "cuda" and torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
@app.on_event("startup")
async def load_model():
global global_model, global_tokenizer, global_tokens, MODEL_NAME, TRUST_REMOTE_CODE, ENABLE_FLASH_ATTENTION_2, TORCH_DTYPE, TORCH_DTYPE_STR, TRUST_REMOTE_CODE_ENV
torch.set_num_threads(max(1, os.cpu_count() // 2))
torch.set_num_interop_threads(max(1, os.cpu_count() // 4))
torch.backends.cuda.preferred_linalg_backend = "fused" if torch.backends.cuda.is_built() else None
torch.backends.cudnn.benchmark = True if torch.cuda.is_available() else False
try:
TORCH_DTYPE = getattr(torch, TORCH_DTYPE_STR.lower(), torch.float32)
if TORCH_DTYPE != torch.float32:
logging.warning(f"Requested dtype {TORCH_DTYPE_STR} might not be fully performant on CPU. Using float32.")
TORCH_DTYPE = torch.float32
except AttributeError:
logging.warning(f"Invalid TORCH_DTYPE specified: {TORCH_DTYPE_STR}. Falling back to float32.")
TORCH_DTYPE = torch.float32
current_model_name = MODEL_NAME
current_trust_remote_code = TRUST_REMOTE_CODE_ENV or (current_model_name == DEFAULT_MODEL_NAME)
device = "cpu"
try:
logging.info(f"Loading config for model: {current_model_name}")
config = AutoConfig.from_pretrained(current_model_name, trust_remote_code=current_trust_remote_code)
original_config = copy.deepcopy(config)
logging.info(f"Modifying config for simplified model.")
if hasattr(config, 'num_hidden_layers'):
config.num_hidden_layers = 1
elif hasattr(config, 'num_layers'):
config.num_layers = 1
if hasattr(config, 'bos_token_id'):
config.bos_token_id = 1
if hasattr(config, 'do_sample'):
config.do_sample = None
if hasattr(config, 'eos_token_id'):
config.eos_token_id = 2
if hasattr(config, 'head_dim'):
config.head_dim = 96
if hasattr(config, 'hidden_size'):
config.hidden_size = 192
if hasattr(config, 'initializer_range'):
config.initializer_range = 0.02
if hasattr(config, 'intermediate_size'):
config.intermediate_size = 512
if hasattr(config, 'max_position_embeddings'):
config.max_position_embeddings = MAX_CONTEXT_TOKENS
if hasattr(config, 'n_positions'):
config.n_positions = MAX_CONTEXT_TOKENS
if hasattr(config, 'seq_len'):
config.seq_len = MAX_CONTEXT_TOKENS
if hasattr(config, 'ctx'):
config.ctx = MAX_CONTEXT_TOKENS
if hasattr(config, 'n_ctx'):
config.n_ctx = MAX_CONTEXT_TOKENS
if hasattr(config, 'max_seq_length'):
config.max_seq_length = MAX_CONTEXT_TOKENS
if hasattr(config, 'max_sequence_length'):
config.max_sequence_length = MAX_CONTEXT_TOKENS
if hasattr(config, 'max_length'):
config.max_length = MAX_CONTEXT_TOKENS
if hasattr(config, 'block_size'):
config.block_size = MAX_CONTEXT_TOKENS
if hasattr(config, 'use_cache'):
config.use_cache = False
if hasattr(config, 'gradient_checkpointing'):
config.gradient_checkpointing = True
if hasattr(config, 'torch_dtype'):
if torch.cuda.is_available() and torch.cuda.get_device_properties(0).has_bfloat16:
config.torch_dtype = 'bfloat16'
else:
config.torch_dtype = 'float16'
if hasattr(config, 'use_bfloat16'):
if torch.cuda.is_available() and torch.cuda.get_device_properties(0).has_bfloat16:
config.use_bfloat16 = True
else:
config.use_bfloat16 = False
if hasattr(config, 'attention_probs_dropout_prob'):
config.attention_probs_dropout_prob = 0.1
if hasattr(config, 'hidden_dropout_prob'):
config.hidden_dropout_prob = 0.1
if hasattr(config, 'layerdrop'):
config.layerdrop = 0.1
if hasattr(config, 'layer_norm_eps'):
config.layer_norm_eps = 1e-5
if hasattr(config, 'initializer_range'):
config.initializer_range = 0.02
if hasattr(config, 'rotary_pct'):
config.rotary_pct = 0.25
if hasattr(config, 'rotary_emb_base'):
config.rotary_emb_base = 10000
if hasattr(config, 'position_embedding_type'):
config.position_embedding_type = 'rotary'
if hasattr(config, 'activation_function'):
config.activation_function = 'gelu_new'
if hasattr(config, 'vocab_size'):
config.vocab_size = 32000
if hasattr(config, 'quantization_config'):
if torch.cuda.is_available():
config.quantization_config = {
'load_in_8bit': True,
'load_in_4bit': False,
'bnb_4bit_compute_dtype':'float16',
'bnb_4bit_use_double_quant':True,
'bnb_4bit_quant_type':'nf4'
}
else:
logging.warning("Quantization config requested but CUDA not available. Skipping quantization config modification.")
config.quantization_config = {}
if hasattr(config, 'load_in_8bit'):
if torch.cuda.is_available():
config.load_in_8bit = True
else:
config.load_in_8bit = False
if hasattr(config, 'load_in_4bit'):
if torch.cuda.is_available():
config.load_in_4bit = False
else:
config.load_in_4bit = False
if hasattr(config, 'tie_word_embeddings'):
config.tie_word_embeddings = True
if hasattr(config, 'output_attentions'):
config.output_attentions = False
if hasattr(config, 'output_hidden_states'):
config.output_hidden_states = False
if hasattr(config, 'use_cache'):
config.use_cache = False
logging.info(f"Loading tokenizer for model: {current_model_name}")
tokenizer_kwargs = {"config": original_config, "trust_remote_code": current_trust_remote_code}
global_tokenizer = AutoTokenizer.from_pretrained(current_model_name, **tokenizer_kwargs)
logging.info("Tokenizer loaded.")
logging.info(f"Loading model: {current_model_name} with modified config and dtype {TORCH_DTYPE} onto {device}")
model_kwargs = {"config": config, "torch_dtype": TORCH_DTYPE, "trust_remote_code": current_trust_remote_code}
global_model = AutoModelForCausalLM.from_pretrained(current_model_name, **model_kwargs)
global_model.to(device)
try:
global_model = torch.compile(global_model, mode="max-autotune")
logging.info("Model compiled with torch.compile (max-autotune mode).")
except Exception as e:
logging.warning(f"Failed to compile model with torch.compile: {e}")
pass
global_model.eval()
logging.info("Model loaded successfully.")
global_tokens["eos_token_id"] = global_tokenizer.eos_token_id
global_tokens["pad_token_id"] = global_tokenizer.pad_token_id
if global_tokens["pad_token_id"] is None and global_tokens["eos_token_id"] is not None:
global_tokens["pad_token_id"] = global_tokens["eos_token_id"]
if global_model.config.pad_token_id is None:
global_model.config.pad_token_id = global_tokens["pad_token_id"]
elif global_tokens["pad_token_id"] is None and global_tokens["eos_token_id"] is None:
logging.warning("Neither EOS nor PAD token is defined for this tokenizer/model.")
if global_model.config.pad_token_id is None and global_tokens.get("pad_token_id") is not None:
global_model.config.pad_token_id = global_tokens["pad_token_id"]
except Exception as e:
logging.exception("Failed to load model or tokenizer:")
global_model = None
global_tokenizer = None
global_tokens = {}
html_code = """
<!DOCTYPE html>
<html lang="es">
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Chatbot Profesional</title>
<style>
body { font-family: Arial, sans-serif; margin: 20px; }
#chatbox { width: 100%; height: 400px; border: 1px solid #ccc; padding: 10px; overflow-y: scroll; margin-bottom: 10px; }
#user-input { width: calc(100% - 100px); padding: 8px; box-sizing: border-box;}
#send-btn { width: 90px; padding: 8px 0;}
#input-area { display: flex;}
</style>
</head>
<body>
<h1>Chatbot Profesional (POST API)</h1>
<div id="chatbox"></div>
<div id="input-area">
<input type="text" id="user-input" placeholder="Escribe tu mensaje aquí..." autocomplete="off"/>
<button id="send-btn">Enviar</button>
</div>
<script>
const chatbox = document.getElementById('chatbox');
const userInput = document.getElementById('user-input');
const sendBtn = document.getElementById('send-btn');
let conversationHistory = [];
const DEFAULT_SYSTEM_PROMPT = "Eres un asistente profesional y servicial.";
let currentSystemPrompt = DEFAULT_SYSTEM_PROMPT;
let botMessageElement = null;
function appendMessage(sender, text, isStreaming = false) {
let msg;
if (isStreaming && botMessageElement) {
botMessageElement.textContent += text;
} else {
msg = document.createElement('p');
msg.innerHTML = `<strong>${sender}:</strong> `;
const textNode = document.createTextNode(text);
msg.appendChild(textNode);
chatbox.appendChild(msg);
if (sender === 'Bot' && isStreaming) {
botMessageElement = textNode;
} else {
botMessageElement = null;
}
}
chatbox.scrollTop = chatbox.scrollHeight;
}
function updateHistory(role, content) {
conversationHistory.push({ "role": role, "content": content });
const maxHistorySize = 10;
if (conversationHistory.length > maxHistorySize * 2) {
conversationHistory = conversationHistory.slice(-(maxHistorySize * 2));
}
}
async function sendMessage() {
const text = userInput.value;
if (!text) {
return;
}
appendMessage('Usuario', text);
updateHistory("user", text);
userInput.value = '';
sendBtn.disabled = true;
botMessageElement = null;
const messagePayload = {
input_text: text,
history: conversationHistory,
system_prompt: currentSystemPrompt,
stream: true,
temperature: 1.0,
top_k: 50,
top_p: 1.0,
repetition_penalty: 1.0,
frequency_penalty: 0.0,
presence_penalty: 0.0,
num_beams: 1,
length_penalty: 1.0,
no_repeat_ngram_size: 0,
early_stopping: false,
do_sample: true,
use_mirostat: false,
mirostat_tau: 5.0,
mirostat_eta: 0.1,
max_new_tokens: 512,
num_return_sequences: 1,
return_token_logprobs: true
};
try {
const response = await fetch('/generate', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
// Add API Key header if needed
// 'X-API-Key': 'YOUR_API_KEY_HERE'
},
body: JSON.stringify(messagePayload),
});
if (!response.ok) {
const errorData = await response.json();
throw new Error(`API Error: ${response.status} ${response.statusText} - ${errorData.detail || errorData.error}`);
}
const reader = response.body.getReader();
const decoder = new TextDecoder();
let buffer = '';
let currentBotResponse = "";
while (true) {
const { value, done } = await reader.read();
if (done) break;
buffer += decoder.decode(value, { stream: true });
const lines = buffer.split('\n');
buffer = lines.pop();
for (const line of lines) {
if (line.trim() === '') continue;
try {
const data = JSON.parse(line);
if (data.type === 'token') {
currentBotResponse += data.text;
appendMessage('Bot', data.text, true);
console.log('Token:', data.token_id, 'Text:', data.text, 'Logprob:', data.logprob);
} else if (data.type === 'done') {
console.log('Generation done', data);
if (data.total_tokens !== undefined) {
appendMessage('System', `Generated ${data.total_tokens} tokens. Finish reason: ${data.finish_reason}`);
}
if (data.final_text !== undefined) {
updateHistory("assistant", data.final_text);
} else if (currentBotResponse) {
updateHistory("assistant", currentBotResponse);
}
} else if (data.type === 'error') {
appendMessage('Error', data.message);
currentBotResponse = "";
}
} catch (e) {
console.error('Failed to parse stream chunk:', e, line);
appendMessage('Error', 'Failed to process stream.');
currentBotResponse = "";
reader.cancel();
return;
}
}
}
if (buffer.trim() !== '') {
try {
const data = JSON.parse(buffer);
if (data.type === 'token') {
currentBotResponse += data.text;
appendMessage('Bot', data.text, true);
console.log('Token:', data.token_id, 'Text:', data.text, 'Logprob:', data.logprob);
} else if (data.type === 'done') {
console.log('Generation done', data);
if (data.total_tokens !== undefined) {
appendMessage('System', `Generated ${data.total_tokens} tokens. Finish reason: ${data.finish_reason}`);
}
if (data.final_text !== undefined) {
updateHistory("assistant", data.final_text);
} else if (currentBotResponse) {
updateHistory("assistant", currentBotResponse);
}
} else if (data.type === 'error') {
appendMessage('Error', data.message);
currentBotResponse = "";
}
} catch (e) {
console.error('Failed to parse remaining buffer:', e, buffer);
appendMessage('Error', 'Failed to process remaining stream data.');
currentBotResponse = "";
}
}
if (currentBotResponse && !botMessageElement) {
updateHistory("assistant", currentBotResponse);
}
botMessageElement = null;
currentBotResponse = "";
} catch (error) {
console.error('Send message error:', error);
appendMessage('Error', error.message || 'An unknown error occurred.');
botMessageElement = null;
currentBotResponse = "";
} finally {
sendBtn.disabled = false;
}
}
sendBtn.onclick = sendMessage;
userInput.addEventListener('keypress', function(event) {
if (event.key === 'Enter') {
event.preventDefault();
sendMessage();
}
});
</script>
</body>
</html>
"""
@app.get("/", response_class=HTMLResponse, summary="Interactive HTML interface")
async def root():
return HTMLResponse(content=html_code)
async def check_health():
model_loaded = global_model is not None
tokenizer_loaded = global_tokenizer is not None
status_data = {
"model_loaded": model_loaded,
"tokenizer_loaded": tokenizer_loaded,
"status": "ok" if model_loaded and tokenizer_loaded else "loading model",
"cuda_available": torch.cuda.is_available(),
"cpu_cores": os.cpu_count(),
"max_concurrent_generations": MAX_CONCURRENT_GENERATIONS,
"currently_running_generations": MAX_CONCURRENT_GENERATIONS - generation_semaphore._value,
"available_slots": generation_semaphore._value,
}
if torch.cuda.is_available():
device_count = torch.cuda.device_count()
status_data["device_count"] = device_count
status_data["devices"] = []
for i in range(device_count):
try:
device_status = {
"id": i,
"name": torch.cuda.get_device_name(i),
"total_memory_mib": round(torch.cuda.get_device_properties(i).total_memory / (1024 * 1024), 2),
"allocated_memory_mib": round(torch.cuda.memory_allocated(i) / (1024 * 1024), 2),
"cached_memory_mib": round(torch.cuda.memory_reserved(i) / (1024 * 1024), 2),
}
status_data["devices"].append(device_status)
except Exception as e:
logging.error(f"Error getting GPU memory info for device {i}: {e}")
status_data["devices"].append({"id": i, "error": str(e)})
else:
status_data["message"] = "CUDA not available. GPU resource info is not applicable."
return status_data
async def get_config_data():
torch_dtype_str_out = str(TORCH_DTYPE).split('.')[-1] if isinstance(TORCH_DTYPE, torch.dtype) else str(TORCH_DTYPE)
return {
"model_name": MODEL_NAME,
"system_prompt_default": SYSTEM_PROMPT,
"max_context_tokens": MAX_CONTEXT_TOKENS,
"max_generation_tokens": MAX_GENERATION_TOKENS,
"cuda_available": torch.cuda.is_available(),
"model_loaded": global_model is not None,
"tokenizer_loaded": global_tokenizer is not None,
"max_concurrent_generations": MAX_CONCURRENT_GENERATIONS,
"trust_remote_code_startup_env": TRUST_REMOTE_CODE_ENV,
"trust_remote_code_effective": TRUST_REMOTE_CODE,
"enable_flash_attention_2": ENABLE_FLASH_ATTENTION_2,
"torch_dtype": torch_dtype_str_out,
"eos_token_id": global_tokens.get("eos_token_id"),
"pad_token_id": global_tokens.get("pad_token_id"),
"bos_token_id": global_tokenizer.bos_token_id if global_tokenizer else None,
"api_key_required": API_KEY is not None
}
async def get_model_info_data():
if global_model is None:
return {"model_name": MODEL_NAME, "is_loaded": False, "message": "Model is not loaded."}
try:
config_dict = global_model.config.to_dict()
keys_to_remove = ['torch_dtype', '_attn_implementation', 'architectures', 'id2label', 'label2id', 'torch_dtype']
for key in keys_to_remove:
config_dict.pop(key, None)
return {
"model_name": MODEL_NAME,
"is_loaded": True,
"device": str(global_model.device),
"torch_dtype": str(global_model.dtype),
"config": config_dict
}
except Exception as e:
logging.exception("Error getting model info:")
return {"model_name": MODEL_NAME, "is_loaded": True, "error": f"Error getting model info: {e}"}
async def internal_tokenize(text: Union[str, List[str]], add_special_tokens: bool = True, is_split_into_words: bool = False, return_token_type_ids: bool = False, padding: Union[bool, str] = False, truncation: Union[bool, str] = False, max_length: Optional[int] = None, return_tensors: Optional[str] = None, return_attention_mask: Optional[bool] = None, return_offsets_mapping: Optional[bool] = None, return_length: Optional[bool] = None, verbose: bool = False, tokenizer_kwargs: Optional[Dict[str, Any]] = None):
if global_tokenizer is None:
raise HTTPException(status_code=status.HTTP_503_SERVICE_UNAVAILABLE, detail="Tokenizer is not loaded.")
try:
tokenizer_kwargs_final = tokenizer_kwargs or {}
return_tensors_final = return_tensors if return_tensors is not None else None
if return_tensors_final is None and (return_attention_mask or return_offsets_mapping or return_length):
return_tensors_final = "pt"
encoded = global_tokenizer(
text,
add_special_tokens=add_special_tokens,
return_token_type_ids=return_token_type_ids,
padding=padding,
truncation=truncation,
max_length=max_length,
is_split_into_words=is_split_into_words,
return_tensors=return_tensors_final,
return_attention_mask=return_attention_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**tokenizer_kwargs_final
)
return encoded
except Exception as e:
logging.exception("Tokenization error:")
raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=f"Tokenization error: {e}")
async def internal_decode(token_ids: List[int], skip_special_tokens: bool = True, clean_up_tokenization_spaces: bool = True, decode_kwargs: Optional[Dict[str, Any]] = None):
if global_tokenizer is None:
raise HTTPException(status_code=status.HTTP_503_SERVICE_UNAVAILABLE, detail="Tokenizer is not loaded.")
try:
decode_kwargs_final = decode_kwargs or {}
text = global_tokenizer.decode(
token_ids,
skip_special_tokens=skip_special_tokens,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
**decode_kwargs_final
)
return {"text": text}
except Exception as e:
logging.exception("Decoding error:")
raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=f"Decoding error: {e}")
def update_global_system_prompt(new_prompt: str):
global SYSTEM_PROMPT
if new_prompt is not None:
SYSTEM_PROMPT = new_prompt.strip()
return {"status": "success", "message": "Global system prompt updated"}
else:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="System prompt cannot be null")
async def internal_reload_model(req: ModelReloadRequest):
global global_model, global_tokenizer, global_tokens, MODEL_NAME, TRUST_REMOTE_CODE, ENABLE_FLASH_ATTENTION_2, TORCH_DTYPE, TORCH_DTYPE_STR, TRUST_REMOTE_CODE_ENV
new_model_name = req.model_name if req.model_name else MODEL_NAME
new_trust_remote_code = req.trust_remote_code if req.trust_remote_code is not None else (TRUST_REMOTE_CODE_ENV or (new_model_name == DEFAULT_MODEL_NAME))
new_enable_flash_attention_2 = req.enable_flash_attention_2 if req.enable_flash_attention_2 is not None else ENABLE_FLASH_ATTENTION_2
new_torch_dtype_str_req = req.torch_dtype if req.torch_dtype else TORCH_DTYPE_STR
try:
new_torch_dtype = getattr(torch, new_torch_dtype_str_req.lower())
if new_torch_dtype != torch.float32:
logging.warning(f"Requested dtype {new_torch_dtype_str_req} might not be fully performant on CPU. Using float32.")
new_torch_dtype = torch.float32
elif not isinstance(new_torch_dtype, torch.dtype):
raise AttributeError
new_torch_dtype_str = str(new_torch_dtype).split('.')[-1]
except AttributeError:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail=f"Invalid or unsupported torch_dtype: {new_torch_dtype_str_req}")
device = "cpu"
async def _reload():
global global_model, global_tokenizer, global_tokens, MODEL_NAME, TRUST_REMOTE_CODE, ENABLE_FLASH_ATTENTION_2, TORCH_DTYPE, TORCH_DTYPE_STR
logging.info(f"Attempting to load model: {new_model_name}")
try:
logging.info("Unloading current model...")
await cleanup(device)
if global_model is not None:
del global_model
global_model = None
if global_tokenizer is not None:
del global_tokenizer
global_tokenizer = None
global_tokens = {}
torch.cuda.empty_cache() if torch.cuda.is_available() else None
gc.collect()
logging.info("Current model unloaded.")
logging.info(f"Loading config for model: {new_model_name}")
config = AutoConfig.from_pretrained(new_model_name, trust_remote_code=new_trust_remote_code)
original_config = copy.deepcopy(config)
logging.info(f"Modifying config for simplified model.")
config_modifications = {
'num_hidden_layers': 1,
'num_layers': 1,
'bos_token_id': 1,
'do_sample': None,
'eos_token_id': 2,
'head_dim': 96,
'hidden_size': 192,
'initializer_range': 0.02,
'intermediate_size': 512,
'max_position_embeddings': MAX_CONTEXT_TOKENS,
'n_positions': MAX_CONTEXT_TOKENS,
'seq_len': MAX_CONTEXT_TOKENS,
'ctx': MAX_CONTEXT_TOKENS,
'n_ctx': MAX_CONTEXT_TOKENS,
'max_seq_length': MAX_CONTEXT_TOKENS,
'max_sequence_length': MAX_CONTEXT_TOKENS,
'max_length': MAX_CONTEXT_TOKENS,
'block_size': MAX_CONTEXT_TOKENS,
'use_cache': False,
'gradient_checkpointing': True,
'attention_probs_dropout_prob': 0.1,
'hidden_dropout_prob': 0.1,
'layerdrop': 0.1,
'layer_norm_eps': 1e-5,
'rotary_pct': 0.25,
'rotary_emb_base': 10000,
'position_embedding_type': 'rotary',
'activation_function': 'gelu_new',
'vocab_size': 32000,
'tie_word_embeddings': True,
'output_attentions': False,
'output_hidden_states': False,
}
for attr, new_val in config_modifications.items():
if hasattr(config, attr):
if attr == 'torch_dtype':
if torch.cuda.is_available() and torch.cuda.get_device_properties(0).has_bfloat16:
setattr(config, attr, torch.bfloat16)
else:
setattr(config, attr, torch.float16)
elif attr == 'use_bfloat16':
if torch.cuda.is_available() and torch.cuda.get_device_properties(0).has_bfloat16:
setattr(config, attr, True)
else:
setattr(config, attr, False)
elif attr == 'quantization_config':
if torch.cuda.is_available():
setattr(config, attr, new_val)
else:
logging.warning(f"Quantization config requested for '{attr}' but CUDA not available. Skipping modification.")
else:
setattr(config, attr, new_val)
elif attr in ['num_hidden_layers', 'num_layers', 'max_position_embeddings', 'n_positions', 'seq_len', 'ctx', 'n_ctx', 'max_seq_length', 'max_sequence_length', 'max_length', 'block_size']:
logging.warning(f"Could not find a standard parameter '{attr}' in config for {new_model_name}. Max context/layer logic might not be fully effective.")
logging.info(f"Loading tokenizer for model: {new_model_name}")
tokenizer_kwargs = {"config": original_config, "trust_remote_code": new_trust_remote_code}
if req.tokenizer_kwargs:
tokenizer_kwargs.update(req.tokenizer_kwargs)
tokenizer = AutoTokenizer.from_pretrained(new_model_name, **tokenizer_kwargs)
logging.info("Tokenizer loaded.")
logging.info(f"Loading model: {new_model_name} with modified config and dtype {new_torch_dtype_str} onto {device}")
model_kwargs = {"config": config, "torch_dtype": new_torch_dtype, "trust_remote_code": new_trust_remote_code}
model = AutoModelForCausalLM.from_pretrained(new_model_name, **model_kwargs)
model.to(device)
try:
model = torch.compile(model, mode="max-autotune")
logging.info("New model compiled with torch.compile (max-autotune mode).")
except Exception as e:
logging.warning(f"Failed to compile new model with torch.compile: {e}")
pass
model.eval()
logging.info("New model loaded successfully.")
global_model = model
global_tokenizer = tokenizer
global_tokens["eos_token_id"] = global_tokenizer.eos_token_id
global_tokens["pad_token_id"] = global_tokenizer.pad_token_id
if global_tokens["pad_token_id"] is None and global_tokens["eos_token_id"] is not None:
global_tokens["pad_token_id"] = global_tokens["eos_token_id"]
if global_model.config.pad_token_id is None:
global_model.config.pad_token_id = global_tokens["pad_token_id"]
elif global_tokens["pad_token_id"] is None and global_tokens["eos_token_id"] is None:
logging.warning("Neither EOS nor PAD token defined for new model.")
if global_model.config.pad_token_id is None and global_tokens.get("pad_token_id") is not None:
global_model.config.pad_token_id = global_tokens["pad_token_id"]
MODEL_NAME = new_model_name
TRUST_REMOTE_CODE = new_trust_remote_code
ENABLE_FLASH_ATTENTION_2 = new_enable_flash_attention_2
TORCH_DTYPE = new_torch_dtype
TORCH_DTYPE_STR = new_torch_dtype_str
if hasattr(global_tokenizer, 'use_fast'):
pass
logging.info(f"Model successfully reloaded to: {MODEL_NAME}")
logging.info({"status": "success", "message": f"Model {new_model_name} loaded successfully."})
except Exception as e:
logging.exception(f"Failed to load model {new_model_name}:")
global_model = None
global_tokenizer = None
global_tokens = {}
logging.error({"status": "error", "message": f"Failed to load model {new_model_name}: {e}. Model is now unloaded."})
asyncio.create_task(_reload())
return {"status": "info", "message": f"Attempting to load model {new_model_name} in background. Check logs for status."}
async def internal_unload_model():
global global_model, global_tokenizer, global_tokens
device = "cpu"
logging.info("Attempting to unload model.")
try:
await cleanup(device)
if global_model is not None:
del global_model
global_model = None
if global_tokenizer is not None:
del global_tokenizer
global_tokenizer = None
global_tokens = {}
torch.cuda.empty_cache() if torch.cuda.is_available() else None
gc.collect()
logging.info("Model unloaded successfully.")
return {"status": "success", "message": "Model unloaded successfully."}
except Exception as e:
logging.exception("Failed to unload model:")
raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=f"Failed to unload model: {e}")
@app.post("/generate", summary="Generate text", dependencies=[Depends(get_api_key)])
async def generate_endpoint(req: GenerateRequest):
if global_model is None or global_tokenizer is None:
raise HTTPException(status_code=status.HTTP_503_SERVICE_UNAVAILABLE, detail="Model is not loaded. It may still be loading or failed to load.")
device = "cpu"
apply_seed(req.seed)
try:
initial_prompt_text = format_conversation(req.input_text, req.history, req.system_prompt)
except Exception as e:
logging.exception("Error formatting conversation:")
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail=f"Error formatting conversation: {e}")
try:
tokenizer_encoding_kwargs = req.tokenizer_kwargs or {}
encoded = global_tokenizer(initial_prompt_text, return_tensors="pt", add_special_tokens=False, **tokenizer_encoding_kwargs).to(device)
initial_ids_before_trunc = encoded.input_ids
initial_prompt_tokens_count_before_trunc = initial_ids_before_trunc.shape[-1]
ids = truncate_encoded_ids(initial_ids_before_trunc, MAX_CONTEXT_TOKENS)
current_prompt_tokens_count = ids.shape[-1]
except Exception as e:
logging.exception("Tokenizer error during encoding:")
await cleanup(device)
raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=f"Tokenizer encoding error: {e}")
if req.tokenize_only:
await cleanup(device)
return JSONResponse({
"prompt_tokens_count": initial_prompt_tokens_count_before_trunc,
"max_context_tokens": MAX_CONTEXT_TOKENS,
"truncated": initial_prompt_tokens_count_before_trunc > MAX_CONTEXT_TOKENS,
"input_text_processed": initial_prompt_text,
"input_ids_truncated": ids.tolist()[0]
})
total_capacity = MAX_CONTEXT_TOKENS + MAX_GENERATION_TOKENS
total_requested_seq_len = current_prompt_tokens_count + req.max_new_tokens
if not req.stream and total_requested_seq_len > total_capacity:
await cleanup(device)
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"Requested sequence length ({total_requested_seq_len} tokens = {current_prompt_tokens_count} prompt + {req.max_new_tokens} new) exceeds model capacity ({total_capacity} tokens) and non-streaming is requested. Consider enabling streaming or reducing max_new_tokens."
)
async with generation_semaphore:
try:
gen_cfg = GenerationConfig(
temperature=req.temperature,
top_k=req.top_k,
top_p=req.top_p,
repetition_penalty=req.repetition_penalty,
frequency_penalty=req.frequency_penalty,
presence_penalty=req.presence_penalty,
num_beams=req.num_beams if not req.stream else 1,
length_penalty=req.length_penalty,
no_repeat_ngram_size=req.no_repeat_ngram_size,
early_stopping=req.early_stopping,
do_sample=req.do_sample,
use_mirostat_mode=1 if req.use_mirostat else 0,
mirostat_tau=req.mirostat_tau,
mirostat_eta=req.mirostat_eta,
max_new_tokens=req.max_new_tokens,
eos_token_id=req.eos_token_id_override if req.eos_token_id_override is not None else global_tokens.get("eos_token_id"),
pad_token_id=req.pad_token_id_override if req.pad_token_id_override is not None else global_tokens.get("pad_token_id"),
bos_token_id=req.bos_token_id_override if req.bos_token_id_override is not None else global_tokenizer.bos_token_id,
num_return_sequences=req.num_return_sequences if not req.stream else 1,
bad_words_ids=req.bad_words_ids,
forced_bos_token_id=req.forced_bos_token_id,
forced_eos_token_id=req.forced_eos_token_id,
renormalize_logits=req.renormalize_logits,
suppress_tokens=req.suppress_tokens,
begin_suppress_tokens=req.begin_suppress_tokens,
end_suppress_tokens=req.end_suppress_tokens,
encoder_no_repeat_ngram_size=req.encoder_no_repeat_ngram_size,
min_length=req.min_length,
max_length=req.max_length,
exponential_decay_length_penalty=req.exponential_decay_length_penalty,
use_cache=req.use_cache,
typical_p=req.typical_p,
epsilon_cutoff=req.epsilon_cutoff,
eta_cutoff=req.eta_cutoff,
temperature_cutoff=req.temperature_cutoff,
encoder_repetition_penalty=req.encoder_repetition_penalty,
max_time=req.max_time,
output_watermark=req.output_watermark,
diversity_penalty=req.diversity_penalty,
num_beam_groups=req.num_beam_groups if not req.stream else 1,
length_normalization_factor=req.length_normalization_factor,
min_new_tokens=req.min_new_tokens,
do_normalize_logits=req.do_normalize_logits,
output_scores=req.output_scores,
output_attentions=req.output_attentions,
output_hidden_states=req.output_hidden_states,
)
if req.stream:
gen_cfg.use_cache = True
gen_cfg.num_beams = 1
gen_cfg.num_return_sequences = 1
gen_cfg.num_beam_groups = 1
return StreamingResponse(stream_generation_logic(req, ids, gen_cfg, device), media_type="text/plain" if req.return_only_text else "application/json")
else:
response_payload = await non_stream_generation_logic(req, ids, gen_cfg, device)
if req.return_only_text:
texts = [seq["text"] for seq in response_payload.get("generated_sequences", []) if seq.get("text") is not None]
if req.num_return_sequences == 1 and texts:
return PlainTextResponse(texts[0])
else:
return JSONResponse(texts)
else:
return JSONResponse(response_payload)
except Exception as e:
logging.exception("Generation error:")
raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=f"Generation error: {e}")
finally:
await cleanup(device)
if __name__ == "__main__":
uvicorn.run(
app, host="0.0.0.0", port=7860,
log_level="critical",
access_log=False
) |