File size: 54,168 Bytes
84011cd 0a8ba41 9cc851e 84011cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import os
import json
import logging
import uuid
from typing import List, Dict, Union, Optional, Generator, Any
import random
import time
from flask import Flask, request, Response, stream_with_context, jsonify, g, render_template_string
from llama_cpp import Llama
class JsonFormatter(logging.Formatter):
def format(self, record):
log_record = {
"timestamp": self.formatTime(record, self.datefmt),
"level": record.levelname,
"name": record.name,
"message": record.getMessage(),
"pathname": record.pathname,
"lineno": record.lineno,
}
if hasattr(record, 'request_id'):
log_record['request_id'] = record.request_id
if record.exc_info:
log_record['exception'] = self.formatException(record.exc_info)
if record.stack_info:
log_record['stack_info'] = self.formatStack(record.stack_info)
skip_keys = {'message', 'asctime', 'levelname', 'levelno', 'pathname', 'filename', 'module', 'funcName', 'lineno', 'created', 'msecs', 'relativeCreated', 'thread', 'threadName', 'process', 'processName', 'exc_info', 'exc_text', 'stack_info', 'request_id'}
for key, value in record.__dict__.items():
if not key.startswith('_') and key not in log_record and key not in skip_keys:
log_record[key] = value
return json.dumps(log_record)
def setup_logging():
logger = logging.getLogger()
if not logger.handlers:
handler = logging.StreamHandler()
formatter = JsonFormatter()
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.setLevel(logging.INFO)
logging.getLogger("werkzeug").setLevel(logging.ERROR)
logging.getLogger("llama_cpp").setLevel(logging.WARNING)
return logger
logger = setup_logging()
MODEL_REPO = os.getenv("MODEL_REPO", "jnjj/vcvcvcv")
MODEL_FILE = os.getenv("MODEL_FILE", "gemma-3-4b-it-q4_0.gguf")
N_CTX = int(os.getenv("N_CTX", "2048"))
N_BATCH = int(os.getenv("N_BATCH", "512"))
N_GPU_LAYERS = 0
FIXED_REPEAT_PENALTY = float(os.getenv("FIXED_REPEAT_PENALTY", "1.1"))
FIXED_SEED = int(os.getenv("FIXED_SEED", "-1"))
DEFAULT_SYSTEM_PROMPT = os.getenv("DEFAULT_SYSTEM_PROMPT", "Eres un asistente conciso, directo y útil.")
CONTEXT_TRUNCATION_BUFFER_RATIO = float(os.getenv("CONTEXT_TRUNCATION_BUFFER_RATIO", "0.85"))
RANDOM_PARAMS_CHOICES = [
{"top_k": 10, "top_p": 0.5, "temperature": 0.2},
{"top_k": 10, "top_p": 0.5, "temperature": 0.1},
{"top_k": 10, "top_p": 0.5, "temperature": 0.3},
{"top_k": 10, "top_p": 0.5, "temperature": 0.4},
{"top_k": 5, "top_p": 0.3, "temperature": 0.6},
{"top_k": 20, "top_p": 0.7, "temperature": 0.5},
]
llm: Optional[Llama] = None
def parse_and_validate_params(data: Dict) -> Dict:
request_id = getattr(g, 'request_id', 'N/A')
params = {}
errors = {}
params["max_tokens"] = None
chosen_params = random.choice(RANDOM_PARAMS_CHOICES)
params["temperature"] = chosen_params["temperature"]
params["top_p"] = chosen_params["top_p"]
params["top_k"] = chosen_params["top_k"]
params["repeat_penalty"] = FIXED_REPEAT_PENALTY
params["seed"] = FIXED_SEED
stop = data.get("stop")
if stop is not None:
if isinstance(stop, list) and all(isinstance(s, str) for s in stop):
params["stop"] = stop
elif isinstance(stop, str):
params["stop"] = [stop]
else:
errors["stop"] = "Stop must be a string or a list of strings"
else:
params["stop"] = None
if errors:
logger.error(f"Parameter validation failed for allowed fields: {errors}", extra={'request_id': request_id})
raise ValueError(json.dumps(errors))
logger.debug(f"Using parameters: max_tokens={params['max_tokens']}, repeat_penalty={params['repeat_penalty']}, seed={params['seed']}, temperature={params['temperature']}, top_p={params['top_p']}, top_k={params['top_k']}", extra={'request_id': request_id})
return params
def prepare_messages(data: Dict, format: Optional[str] = None) -> List[Dict[str, str]]:
request_id = getattr(g, 'request_id', 'N/A')
messages_list = data.get("messages")
prompt_str = data.get("prompt")
system_instruction = data.get("system_prompt", DEFAULT_SYSTEM_PROMPT)
if not messages_list and not prompt_str:
raise ValueError("Either 'messages' list or 'prompt' string is required.")
if messages_list and not isinstance(messages_list, list):
raise ValueError("'messages' must be a list of dictionaries.")
if prompt_str and not isinstance(prompt_str, str):
raise ValueError("'prompt' must be a string.")
if system_instruction and not isinstance(system_instruction, str):
raise ValueError("'system_prompt' must be a string.")
final_messages = []
content_format_instruction = ""
if format == "markdown":
content_format_instruction = " Format your response using Markdown."
elif format is not None:
logger.warning(f"Unsupported format '{format}' requested.", extra={'request_id': request_id})
effective_system_prompt = system_instruction.strip() + content_format_instruction.strip()
if effective_system_prompt:
final_messages.append({"role": "system", "content": effective_system_prompt})
user_provided_system = False
if messages_list:
has_user_message = False
for i, msg in enumerate(messages_list):
if not isinstance(msg, dict) or "role" not in msg or "content" not in msg:
raise ValueError(f"Message at index {i} is invalid: must be a dictionary with 'role' and 'content'.")
role = msg.get("role")
content = msg.get("content", "")
if not isinstance(content, str):
logger.warning(f"Message content at index {i} (role: {role}) is not a string (type: {type(content)}). Converting to string.", extra={'request_id': request_id})
content = str(content)
if role == "system":
if i == 0 and final_messages and final_messages[0]["role"] == "system":
logger.info("Replacing default system prompt with user-provided system message.", extra={'request_id': request_id})
final_messages[0] = {"role": "system", "content": content}
user_provided_system = True
elif i == 0 and not final_messages:
final_messages.append({"role": "system", "content": content})
user_provided_system = True
else:
logger.warning(f"Ignoring additional system message at index {i} as system prompt is already set or should be at the start.", extra={'request_id': request_id})
continue
elif role == "user":
has_user_message = True
final_messages.append({"role": role, "content": content})
if not has_user_message and any(m["role"] != "system" for m in final_messages):
logger.warning("The 'messages' list contains no user messages.", extra={'request_id': request_id})
elif prompt_str:
final_messages.append({"role": "user", "content": prompt_str})
if not final_messages or all(m["role"] == "system" for m in final_messages):
raise ValueError("No user or assistant messages found to generate a response.")
return final_messages
def estimate_token_count(messages: List[Dict[str, str]]) -> int:
request_id = getattr(g, 'request_id', 'N/A')
if not llm or not hasattr(llm, 'tokenize') or not hasattr(llm, 'apply_chat_template'):
logger.warning("LLM or tokenizer/template function not available for token estimation.", extra={'request_id': request_id})
return -1
if not hasattr(llm, 'tokenize') or not hasattr(llm, 'apply_chat_template'):
logger.warning("`tokenize` or `apply_chat_template` not found on LLM object. Cannot estimate tokens accurately.", extra={'request_id': request_id})
char_count = sum(len(m.get('content', '')) for m in messages)
return char_count // 4
try:
chat_prompt_string = llm.apply_chat_template(messages, add_generation_prompt=False)
tokens = llm.tokenize(chat_prompt_string.encode('utf-8', errors='ignore'), add_bos=True)
return len(tokens)
except Exception as e:
try:
simple_text = "\n".join([f"{m.get('role', 'unknown')}: {m.get('content', '')}" for m in messages])
tokens = llm.tokenize(simple_text.encode('utf-8', errors='ignore'), add_bos=True)
logger.warning(f"Chat template failed during token estimation, using simple join. Error: {e}", extra={'request_id': request_id})
return len(tokens)
except Exception as e_inner:
logger.error(f"Could not estimate token count using either method: {e_inner}", exc_info=True, extra={'request_id': request_id})
return -1
def get_effective_n_ctx() -> int:
if llm and hasattr(llm, 'n_ctx') and callable(llm.n_ctx):
try:
return llm.n_ctx()
except Exception:
logger.warning("Failed to call llm.n_ctx(), falling back to N_CTX config value.")
return N_CTX
return N_CTX
def truncate_messages_for_context(messages: List[Dict[str, str]], max_tokens: int, buffer_ratio: float) -> List[Dict[str, str]]:
request_id = getattr(g, 'request_id', 'N/A')
if not llm: return messages
target_token_limit = int(max_tokens * buffer_ratio)
truncated_messages: List[Dict[str, str]] = []
system_prompt: Optional[Dict[str, str]] = None
if messages and messages[0].get("role") == "system":
system_prompt = messages[0]
remaining_messages = messages[1:]
if system_prompt:
truncated_messages.append(system_prompt)
else:
remaining_messages = messages
current_token_count = estimate_token_count(truncated_messages) if truncated_messages else 0
if current_token_count == -1:
logger.warning("Could not estimate initial token count for truncation, proceeding cautiously.", extra={'request_id': request_id})
current_token_count = 0
messages_to_add = []
for msg in reversed(remaining_messages):
potential_list = [msg] + messages_to_add
if system_prompt:
potential_list_with_system = [system_prompt] + potential_list
else:
potential_list_with_system = potential_list
next_token_count = estimate_token_count(potential_list_with_system)
if next_token_count != -1 and next_token_count <= target_token_limit:
messages_to_add.insert(0, msg)
current_token_count = next_token_count
elif next_token_count == -1:
logger.warning(f"Token estimation failed while adding message: {msg}. Stopping truncation early.", extra={'request_id': request_id})
break
else:
logger.debug(f"Stopping truncation: Adding next message would exceed target limit ({next_token_count} > {target_token_limit}).", extra={'request_id': request_id})
break
final_truncated_list = ([system_prompt] if system_prompt else []) + messages_to_add
original_count = len(messages)
final_count = len(final_truncated_list)
if final_count < original_count:
logger.warning(f"Context truncated: Kept {final_count}/{original_count} messages. Estimated tokens: ~{current_token_count}/{target_token_limit} (target).",
extra={'request_id': request_id, 'kept': final_count, 'original': original_count, 'estimated_tokens': current_token_count, 'target_limit': target_token_limit})
else:
logger.debug(f"Context truncation check complete. Kept all {final_count} messages. Estimated tokens: ~{current_token_count}.",
extra={'request_id': request_id, 'kept': final_count, 'estimated_tokens': current_token_count})
if not final_truncated_list and messages:
logger.error("Truncation resulted in an empty message list! Returning last message.", extra={'request_id': request_id})
return [messages[-1]]
elif not final_truncated_list:
logger.error("Truncation called with empty input, returning empty.", extra={'request_id': request_id})
return []
return final_truncated_list
def load_model():
global llm, N_CTX
logger.info(f"Attempting to load model: {MODEL_REPO}/{MODEL_FILE}")
effective_n_gpu_layers = 0
logger.info(f"Configuration: N_CTX={N_CTX}, N_BATCH={N_BATCH}, N_GPU_LAYERS={effective_n_gpu_layers} (forced CPU)")
try:
llm = Llama.from_pretrained(
repo_id=MODEL_REPO,
filename=MODEL_FILE,
n_ctx=N_CTX,
n_batch=N_BATCH,
n_gpu_layers=effective_n_gpu_layers,
verbose=False,
use_mmap=True,
use_mlock=True,
)
logger.info("Model loaded successfully.")
if llm:
actual_n_ctx = get_effective_n_ctx()
if actual_n_ctx != N_CTX:
logger.warning(f"Model's actual context size ({actual_n_ctx}) differs from initial config ({N_CTX}). Using actual value: {actual_n_ctx}", extra={'actual_n_ctx': actual_n_ctx, 'configured_n_ctx': N_CTX})
N_CTX = actual_n_ctx
actual_n_batch = llm.n_batch if hasattr(llm, 'n_batch') else N_BATCH
actual_n_gpu_layers = llm.n_gpu_layers if hasattr(llm, 'n_gpu_layers') else 0
logger.info(f"Actual Model Context Window (n_ctx): {N_CTX}")
logger.info(f"Actual Model Batch Size (n_batch): {actual_n_batch}")
logger.info(f"Actual Model GPU Layers (n_gpu_layers): {actual_n_gpu_layers} (should be 0 for CPU)")
if N_CTX < 1024 or actual_n_batch < 64:
logger.warning("Model loaded with relatively small N_CTX or N_BATCH. Performance or max generation length might be impacted.", extra={'n_ctx': N_CTX, 'n_batch': actual_n_batch})
if actual_n_gpu_layers > 0:
logger.warning(f"Model loaded with {actual_n_gpu_layers} GPU layers despite requesting 0. Check llama.cpp build or environment.", extra={'actual_gpu_layers': actual_n_gpu_layers})
try:
test_tokens = llm.tokenize(b"Test sentence.")
logger.info(f"Tokenizer test successful. 'Test sentence.' -> {len(test_tokens)} tokens.")
except Exception as tokenize_e:
logger.warning(f"Could not perform test tokenization: {tokenize_e}")
except Exception as e:
logger.error(f"Fatal error loading model: {e}", exc_info=True)
llm = None
logger.error("Model failed to load. Generation requests will not work.", extra={'error': str(e)})
app = Flask(__name__)
@app.before_request
def before_request_func():
g.request_id = str(uuid.uuid4())
logger.debug(f"Incoming request: {request.method} {request.path} from {request.remote_addr}", extra={'request_id': g.request_id, 'path': request.path, 'method': request.method})
load_model()
html_code = """
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>LLM API Demo</title>
<style>
body { font-family: sans-serif; margin: 20px; line-height: 1.6; background-color: #f4f4f4; color: #333; }
.container { max-width: 800px; margin: auto; background: #fff; padding: 20px; border-radius: 8px; box-shadow: 0 2px 5px rgba(0,0,0,0.1); }
h1, h2 { color: #0056b3; }
.section { margin-bottom: 30px; padding: 20px; background-color: #e9e9e9; border-radius: 5px; }
label { display: block; margin-bottom: 5px; font-weight: bold; }
input[type="text"], input[type="number"], textarea, select {
width: calc(100% - 22px); padding: 10px; margin-bottom: 10px; border: 1px solid #ccc; border-radius: 4px;
}
textarea { resize: vertical; min-height: 100px; }
button {
display: inline-block; background-color: #007bff; color: white; padding: 10px 15px; border: none; border-radius: 4px; cursor: pointer; font-size: 16px;
margin-right: 10px; transition: background-color 0.3s ease;
}
button:hover { background-color: #0056b3; }
button:disabled { background-color: #cccccc; cursor: not-allowed; }
.output {
background-color: #f9f9f9; border: 1px solid #ddd; padding: 15px; border-radius: 4px; white-space: pre-wrap; word-wrap: break-word; max-height: 400px; overflow-y: auto; font-family: monospace;
}
.error { color: red; font-weight: bold; }
.info { color: green; }
.warning { color: orange; }
.param-fixed { font-style: italic; color: #555; margin-bottom: 10px; }
.checkbox-container { display: flex; align-items: center; margin-bottom: 10px; }
.checkbox-container input { margin-right: 5px; width: auto; }
.continuation-info { font-weight: bold; }
</style>
</head>
<body>
<div class="container">
<h1>LLM API Demonstration</h1>
<div class="section">
<h2>Health Check</h2>
<button id="healthCheckBtn">Check Health</button>
<p id="healthStatus"></p>
</div>
<div class="section">
<h2>API Info</h2>
<button id="apiInfoBtn">Get Info</button>
<pre id="apiInfoOutput" class="output"></pre>
</div>
<div class="section">
<h2>Generate Text (Automatic Continuation with Context Management)</h2>
<label for="promptInput">Prompt / First User Message:</label>
<textarea id="promptInput" placeholder="Enter your prompt here..."></textarea>
<div class="param-fixed">Note: No artificial token limit. Generation continues until the model stops naturally, hits a stop sequence, or reaches the context window limit (N_CTX={{ N_CTX }}). If the context limit is reached, the server will attempt to continue automatically by <strong class="continuation-info">truncating older messages (unlimited continuations)</strong>. Other parameters (Temperature, Top P, Top K, Repeat Penalty, Seed) are fixed/random per generation cycle.</div>
<div>
<label for="stopInput">Stop Sequences (comma-separated):</label>
<input type="text" id="stopInput" value="">
</div>
<div>
<label for="systemPromptInput">System Prompt (Optional Override - default: "{{ DEFAULT_SYSTEM_PROMPT | escape }}"):</label>
<input type="text" id="systemPromptInput" placeholder="Leave empty to use default">
</div>
<div>
<label for="formatSelect">Format:</label>
<select id="formatSelect">
<option value="">None</option>
<option value="markdown">Markdown</option>
</select>
</div>
<div class="checkbox-container">
<input type="checkbox" id="streamCheckbox" checked>
<label for="streamCheckbox">Stream Output</label>
</div>
<button id="generateBtn">Generate</button>
<p id="generationStatus"></p>
<pre id="generationOutput" class="output"></pre>
</div>
</div>
<script>
const healthCheckBtn = document.getElementById('healthCheckBtn');
const healthStatus = document.getElementById('healthStatus');
const apiInfoBtn = document.getElementById('apiInfoBtn');
const apiInfoOutput = document.getElementById('apiInfoOutput');
const promptInput = document.getElementById('promptInput');
const stopInput = document.getElementById('stopInput');
const systemPromptInput = document.getElementById('systemPromptInput');
const formatSelect = document.getElementById('formatSelect');
const streamCheckbox = document.getElementById('streamCheckbox');
const generateBtn = document.getElementById('generateBtn');
const generationOutput = document.getElementById('generationOutput');
const generationStatus = document.getElementById('generationStatus');
const API_BASE_URL = window.location.origin;
async function checkHealth() {
healthStatus.textContent = 'Checking...';
healthStatus.className = '';
try {
const response = await fetch(`${API_BASE_URL}/health`);
const data = await response.json();
healthStatus.textContent = `Status: ${data.status}, Message: ${data.message}`;
healthStatus.className = data.status === 'ok' ? 'info' : (data.status === 'warning' ? 'warning' : 'error');
} catch (error) {
healthStatus.textContent = `Error fetching health: ${error}`;
healthStatus.className = 'error';
}
}
async function getApiInfo() {
apiInfoOutput.textContent = 'Loading...';
apiInfoOutput.className = 'output';
try {
const response = await fetch(`${API_BASE_URL}/info`);
if (!response.ok) {
try {
const errorData = await response.json();
throw new Error(`API Error ${response.status}: ${errorData.error || JSON.stringify(errorData)}`);
} catch (e) {
throw new Error(`API Error ${response.status}: ${response.statusText}`);
}
}
const data = await response.json();
const nCtx = data?.model_config?.loaded_model_details?.n_ctx || '{{ N_CTX }}';
const maxContDesc = data?.generation_parameters?.max_automatic_continuations === null ? "unlimited continuations" : `up to ${data?.generation_parameters?.max_automatic_continuations} times`;
const description = document.querySelector('.param-fixed');
if (description) {
description.innerHTML = `Note: No artificial token limit. Generation continues until the model stops naturally, hits a stop sequence, or reaches the context window limit (N_CTX=${nCtx}). If the context limit is reached, the server will attempt to continue automatically by <strong class="continuation-info">truncating older messages (${maxContDesc})</strong>. Other parameters (Temperature, Top P, Top K, Repeat Penalty, Seed) are fixed/random per generation cycle.`;
}
apiInfoOutput.textContent = JSON.stringify(data, null, 2);
} catch (error) {
apiInfoOutput.textContent = `Error fetching info: ${error}`;
apiInfoOutput.className = 'output error';
}
}
async function generateText() {
generationOutput.textContent = '';
generationStatus.textContent = 'Preparing request...';
generationStatus.className = '';
generateBtn.disabled = true;
const prompt = promptInput.value;
if (!prompt.trim()) {
generationStatus.textContent = 'Error: Prompt cannot be empty.';
generationStatus.className = 'error';
generateBtn.disabled = false;
return;
}
const messages = [{"role": "user", "content": prompt}];
const stream = streamCheckbox.checked;
const format = formatSelect.value || undefined;
const stopSequences = stopInput.value.split(',').map(s => s.trim()).filter(s => s.length > 0);
const stop = stopSequences.length > 0 ? stopSequences : undefined;
const systemPrompt = systemPromptInput.value.trim() || undefined;
const requestBody = {
messages: messages,
stop: stop,
stream: stream,
format: format,
system_prompt: systemPrompt
};
generationStatus.textContent = 'Generating... (may continue automatically with context truncation if needed)';
generationStatus.className = 'info';
try {
const response = await fetch(`${API_BASE_URL}/generate`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify(requestBody),
});
if (!response.ok) {
const errorText = await response.text();
let errorMessage = `Error: ${response.status} ${response.statusText}`;
try {
const errorData = JSON.parse(errorText);
errorMessage += ` - ${errorData.error || JSON.stringify(errorData.detail || errorData)}`;
} catch (jsonParseError) {
errorMessage += ` - ${errorText}`;
}
generationStatus.textContent = errorMessage;
generationStatus.className = 'error';
generateBtn.disabled = false;
return;
}
if (stream) {
const reader = response.body.getReader();
const decoder = new TextDecoder('utf-8');
let finished = false;
generationOutput.textContent = '';
let continuationCount = 0;
while (!finished) {
const { done, value } = await reader.read();
if (done) {
finished = true;
if (!generationStatus.textContent.includes("finished") && !generationStatus.textContent.includes("stopped") && !generationStatus.textContent.includes("Error")) {
generationStatus.textContent = `Streaming finished. Continuations: ${continuationCount}.`;
generationStatus.className = 'info';
}
break;
}
const chunk = decoder.decode(value, { stream: true });
const continueMatch = chunk.match(/\n\[CONTINUING (\d+) - TRUNCATING CONTEXT\.\.\.\]\n/);
if (continueMatch) {
continuationCount = parseInt(continueMatch[1]);
generationOutput.textContent += chunk;
generationStatus.textContent = `Context limit reached, truncating history and continuing generation (Continuation #${continuationCount})...`;
generationStatus.className = 'warning continuation-info';
} else if (chunk.startsWith("\\n[ERROR]")) {
generationOutput.textContent += chunk;
generationStatus.textContent = 'Error during generation (see output).';
generationStatus.className = 'error';
finished = true;
} else if (chunk.startsWith("\\n[INFO] Generation stopped")) {
generationOutput.textContent += chunk;
generationStatus.textContent = `Generation stopped (see output for reason). Continuations: ${continuationCount}.`;
generationStatus.className = 'info';
finished = true;
} else {
generationOutput.textContent += chunk;
if (!generationStatus.className.includes('warning') && !generationStatus.className.includes('error')) {
generationStatus.textContent = `Streaming... (Continuation #${continuationCount})`;
generationStatus.className = 'info';
}
}
generationOutput.scrollTop = generationOutput.scrollHeight;
}
} else {
const text = await response.text();
const finishReason = response.headers.get('X-Finish-Reason');
const continuations = response.headers.get('X-Continuations');
const usageTokens = response.headers.get('X-Usage-Completion-Tokens');
generationOutput.textContent = text;
let statusText = `Generation finished. Reason: ${finishReason || 'unknown'}.`;
if (continuations && parseInt(continuations) > 0) {
statusText += ` Continuations: ${continuations} (context truncated).`;
generationStatus.className = 'warning continuation-info';
} else {
generationStatus.className = 'info';
}
if (usageTokens) statusText += ` Tokens: ~${usageTokens}.`;
generationStatus.textContent = statusText;
}
} catch (error) {
generationStatus.textContent = `Network or processing error: ${error}`;
generationStatus.className = 'error';
} finally {
generateBtn.disabled = false;
}
}
healthCheckBtn.addEventListener('click', checkHealth);
apiInfoBtn.addEventListener('click', getApiInfo);
generateBtn.addEventListener('click', generateText);
checkHealth();
getApiInfo();
</script>
</body>
</html>
"""
@app.route("/")
def index():
rendered_html = render_template_string(
html_code,
N_CTX=N_CTX,
DEFAULT_SYSTEM_PROMPT=DEFAULT_SYSTEM_PROMPT
)
return rendered_html
@app.route("/health", methods=["GET"])
def health_check():
if llm:
if hasattr(llm, 'tokenize') and hasattr(llm, 'apply_chat_template'):
return jsonify(status="ok", message="Model is loaded and ready."), 200
else:
logger.warning("Model loaded, but tokenizer or chat template functions might be missing.")
return jsonify(status="warning", message="Model loaded, but critical functions (tokenize/apply_chat_template) might be missing."), 200
else:
return jsonify(status="error", message="Model failed to load or is not available."), 503
@app.route("/info", methods=["GET"])
def model_info():
request_id = getattr(g, 'request_id', 'N/A')
if not llm:
logger.warning("Info request received but model is not loaded.", extra={'request_id': request_id})
return jsonify(error="Model not available."), 503
model_details: Union[Dict[str, Any], str] = "Model details unavailable"
actual_n_ctx = get_effective_n_ctx()
actual_n_batch = N_BATCH
actual_n_gpu_layers = N_GPU_LAYERS
try:
actual_n_batch = llm.n_batch if hasattr(llm, 'n_batch') else N_BATCH
actual_n_gpu_layers = llm.n_gpu_layers if hasattr(llm, 'n_gpu_layers') else 0
n_embd = 'N/A'
if hasattr(llm, '_model') and hasattr(llm._model, 'n_embd') and callable(llm._model.n_embd):
try:
n_embd = llm._model.n_embd()
except Exception as embd_e:
logger.warning(f"Could not get n_embd: {embd_e}", extra={'request_id': request_id})
model_details = {
"n_embd": n_embd,
"n_ctx": actual_n_ctx,
"n_batch": actual_n_batch,
"n_gpu_layers": actual_n_gpu_layers,
"tokenizer_present": hasattr(llm, 'tokenize'),
"chat_handler_present": hasattr(llm, 'apply_chat_template') and hasattr(llm, 'create_chat_completion'),
}
except Exception as e:
logger.warning(f"Could not retrieve all model details: {e}", extra={'request_id': request_id})
model_details = f"Error retrieving some model details: {e}"
info = {
"status": "ok",
"message": "Model is loaded. Generation continues automatically with context truncation if context limit is hit.",
"model_config": {
"repo_id": MODEL_REPO,
"filename": MODEL_FILE,
"initial_load_config": {
"n_ctx": os.getenv("N_CTX", "2048"),
"n_batch": N_BATCH,
"n_gpu_layers": 0,
},
"loaded_model_details": model_details,
},
"generation_parameters": {
"note": f"No artificial 'max_tokens' limit. Generation proceeds until stop sequence, EOS, or context limit (N_CTX={actual_n_ctx}). Automatic continuation attempts by truncating context **indefinitely** if context limit is reached. Sampling parameters (temperature, top_p, top_k) are chosen randomly per request/continuation cycle from predefined sets. Repeat penalty and seed are fixed.",
"fixed_max_tokens": None,
"fixed_repeat_penalty": FIXED_REPEAT_PENALTY,
"fixed_seed": FIXED_SEED,
"max_automatic_continuations": None,
"context_truncation_buffer_ratio": CONTEXT_TRUNCATION_BUFFER_RATIO,
"randomly_chosen_from": RANDOM_PARAMS_CHOICES,
"default_system_prompt": DEFAULT_SYSTEM_PROMPT,
"user_controllable": ["messages", "prompt", "stop", "stream", "format", "system_prompt"],
},
}
return jsonify(info), 200
@app.route("/generate", methods=["POST"])
def generate():
request_id = getattr(g, 'request_id', 'N/A')
if not llm:
logger.error("Generate request received but model is not loaded.", extra={'request_id': request_id})
return jsonify(error="Model is not available.", detail="The LLM model could not be loaded."), 503
if not request.is_json:
logger.warning("Request received without Content-Type: application/json", extra={'request_id': request_id})
return jsonify(error="Invalid request header", detail="Content-Type must be application/json"), 415
data = request.get_json()
is_streaming = data.get("stream", True)
response_format = data.get("format")
log_data_summary = {k: v for k, v in data.items() if k not in ('messages', 'prompt')}
log_data_summary['messages_count_initial'] = len(data.get('messages', [])) if 'messages' in data else 0
log_data_summary['has_prompt_initial'] = 'prompt' in data
log_data_summary['stream'] = is_streaming
log_data_summary['format'] = response_format
logger.info(f"Received generation request summary.", extra={'request_id': request_id, 'summary': log_data_summary})
try:
initial_messages = prepare_messages(data, format=response_format)
base_generation_params = parse_and_validate_params(data)
effective_n_ctx = get_effective_n_ctx()
input_token_count = estimate_token_count(initial_messages)
if input_token_count != -1 and input_token_count >= effective_n_ctx:
truncated_initial = truncate_messages_for_context(initial_messages, effective_n_ctx, CONTEXT_TRUNCATION_BUFFER_RATIO)
truncated_token_count = estimate_token_count(truncated_initial)
if truncated_token_count != -1 and truncated_token_count >= effective_n_ctx:
error_msg = f"Initial input exceeds context window ({effective_n_ctx}) even after attempting truncation. Input tokens (~{input_token_count}) / Truncated tokens (~{truncated_token_count}). Reduce initial message size significantly."
logger.error(error_msg, extra={'request_id': request_id, 'initial_tokens': input_token_count, 'truncated_tokens': truncated_token_count, 'n_ctx': effective_n_ctx})
return jsonify(error="Input exceeds context window", detail=error_msg), 400
else:
logger.warning(f"Initial input (~{input_token_count} tokens) exceeded context window ({effective_n_ctx}). Truncated to ~{truncated_token_count} tokens.", extra={'request_id': request_id, 'initial_tokens': input_token_count, 'truncated_tokens': truncated_token_count, 'n_ctx': effective_n_ctx})
initial_messages = truncated_initial
input_token_count = truncated_token_count
elif input_token_count != -1:
logger.info(f"Initial input token count: ~{input_token_count}. Context window: {effective_n_ctx}. Remaining: {effective_n_ctx - input_token_count}.", extra={'request_id': request_id, 'input_tokens': input_token_count, 'n_ctx': effective_n_ctx, 'remaining_ctx': effective_n_ctx - input_token_count})
else:
logger.warning("Could not estimate initial token count. Proceeding with generation, may hit context limit.", extra={'request_id': request_id})
logger.info(f"Processing request with {len(initial_messages)} initial messages. Stream={is_streaming}. Format={response_format}. max_tokens=None (dynamic). Unlimited Continuations.", extra={'request_id': request_id})
except ValueError as e:
logger.error(f"Invalid input data: {e}", exc_info=True, extra={'request_id': request_id})
try: error_detail = json.loads(str(e))
except json.JSONDecodeError: error_detail = str(e)
return jsonify(error="Invalid input", detail=error_detail), 400
except Exception as e:
logger.error(f"Unexpected error preparing request: {e}", exc_info=True, extra={'request_id': request_id})
return jsonify(error="Internal server error", detail="An unexpected error occurred processing the request."), 500
if is_streaming:
def generate_streaming_with_continuation(current_request_id: str) -> Generator[str, None, None]:
current_messages = list(initial_messages)
continuations = 0
total_tokens_generated_stream = 0
effective_n_ctx = get_effective_n_ctx()
while True:
cycle_number = continuations + 1
logger.info(f"Starting streaming generation cycle {cycle_number}. Message count: {len(current_messages)}.", extra={'request_id': current_request_id})
chosen_params = random.choice(RANDOM_PARAMS_CHOICES)
current_dynamic_params = {
"temperature": chosen_params["temperature"],
"top_p": chosen_params["top_p"],
"top_k": chosen_params["top_k"],
}
current_params = {**base_generation_params, **current_dynamic_params}
logger.debug(f"Cycle {cycle_number} params: temp={current_params['temperature']}, top_p={current_params['top_p']}, top_k={current_params['top_k']}", extra={'request_id': current_request_id})
generated_this_cycle = ""
finish_reason = None
hit_context_limit_in_cycle = False
try:
streamer = llm.create_chat_completion(
messages=current_messages,
max_tokens=current_params["max_tokens"],
temperature=current_params["temperature"],
top_p=current_params["top_p"],
top_k=current_params["top_k"],
repeat_penalty=current_params["repeat_penalty"],
stop=current_params["stop"],
seed=current_params["seed"],
stream=True,
)
for chunk in streamer:
choice = chunk.get("choices", [{}])[0]
delta = choice.get("delta", {})
token = delta.get("content")
current_chunk_finish_reason = choice.get("finish_reason")
if token:
generated_this_cycle += token
total_tokens_generated_stream += 1
yield token
if current_chunk_finish_reason:
finish_reason = current_chunk_finish_reason
logger.info(f"Streaming chunk finished cycle {cycle_number}. Reason: {finish_reason}", extra={'request_id': current_request_id, 'finish_reason': finish_reason})
if finish_reason == 'length':
hit_context_limit_in_cycle = True
usage = chunk.get("usage")
if usage: logger.debug(f"Usage reported in final chunk: {usage}", extra={'request_id': current_request_id, 'usage': usage})
break
if not finish_reason:
pass
except Exception as e:
err_str = str(e).lower()
if "context window is full" in err_str or \
"kv cache is full" in err_str or \
"llama_decode" in err_str or \
(hasattr(e, 'condition') and ("context length" in str(e.condition).lower() or "failed to decode" in str(e.condition).lower())):
logger.warning(f"N_CTX limit or related exception caught during streaming cycle {cycle_number}: {e}", extra={'request_id': current_request_id})
hit_context_limit_in_cycle = True
finish_reason = 'length'
else:
logger.error(f"Unhandled error during streaming generation cycle {cycle_number}: {e}", exc_info=True, extra={'request_id': current_request_id})
yield f"\n[ERROR] Generation failed unexpectedly in cycle {cycle_number}: {str(e)}"
return
if generated_this_cycle:
if not current_messages or current_messages[-1].get('role') != 'assistant':
current_messages.append({"role": "assistant", "content": generated_this_cycle})
else:
current_messages[-1]['content'] += generated_this_cycle
elif hit_context_limit_in_cycle:
logger.warning(f"Context limit hit in streaming cycle {cycle_number} but no tokens were generated in this cycle. Check model behavior.", extra={'request_id': current_request_id})
elif not finish_reason:
logger.warning(f"Stream cycle {cycle_number} ended without generating tokens or a definite finish reason. Stopping.", extra={'request_id': current_request_id})
yield f"\n[INFO] Generation stopped: Cycle ended unexpectedly."
break
if finish_reason == 'stop':
logger.info(f"Generation stopped naturally (reason: stop) in streaming cycle {cycle_number}. Total stream tokens: ~{total_tokens_generated_stream}", extra={'request_id': current_request_id})
yield f"\n[INFO] Generation stopped: Stop sequence or EOS."
break
elif hit_context_limit_in_cycle:
continuations += 1
logger.warning(f"N_CTX limit reached in streaming cycle {cycle_number}. Attempting continuation {continuations} (reinicio de contador).", extra={'request_id': current_request_id})
current_messages = truncate_messages_for_context(current_messages, effective_n_ctx, CONTEXT_TRUNCATION_BUFFER_RATIO)
if not current_messages:
logger.error("Context truncation resulted in empty messages during streaming. Stopping.", extra={'request_id': current_request_id})
yield f"\n[ERROR] Generation failed: Context truncation error."
break
yield f"\n[CONTINUING {continuations} - TRUNCATING CONTEXT...]\n"
time.sleep(0.1)
continue
else:
logger.warning(f"Streaming generation cycle {cycle_number} ended with reason '{finish_reason}' or unexpectedly. Stopping generation.", extra={'request_id': current_request_id, 'finish_reason': finish_reason})
yield f"\n[INFO] Generation stopped: Reason: {finish_reason or 'Unknown'}"
break
logger.info(f"Streaming generation finished after {continuations} continuations. Total stream tokens generated: ~{total_tokens_generated_stream}", extra={'request_id': current_request_id, 'continuations': continuations, 'total_stream_tokens': total_tokens_generated_stream})
headers = {
"Content-Type": "text/event-stream; charset=utf-8",
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no",
"X-Request-ID": request_id
}
return Response(stream_with_context(generate_streaming_with_continuation(request_id)), headers=headers)
else:
current_messages = list(initial_messages)
continuations = 0
full_generated_text = ""
total_tokens_generated_nonstream = 0
final_finish_reason = "unknown"
final_usage = {}
effective_n_ctx = get_effective_n_ctx()
while True:
cycle_number = continuations + 1
logger.info(f"Starting non-streaming generation cycle {cycle_number}. Message count: {len(current_messages)}.", extra={'request_id': request_id})
chosen_params = random.choice(RANDOM_PARAMS_CHOICES)
current_dynamic_params = {
"temperature": chosen_params["temperature"],
"top_p": chosen_params["top_p"],
"top_k": chosen_params["top_k"],
}
current_params = {**base_generation_params, **current_dynamic_params}
logger.debug(f"Cycle {cycle_number} params: temp={current_params['temperature']}, top_p={current_params['top_p']}, top_k={current_params['top_k']}", extra={'request_id': request_id})
generated_this_cycle = ""
finish_reason = None
hit_context_limit_in_cycle = False
usage_this_cycle = {}
try:
result = llm.create_chat_completion(
messages=current_messages,
max_tokens=current_params["max_tokens"],
temperature=current_params["temperature"],
top_p=current_params["top_p"],
top_k=current_params["top_k"],
repeat_penalty=current_params["repeat_penalty"],
stop=current_params["stop"],
seed=current_params["seed"],
stream=False,
)
if result and "choices" in result and result["choices"]:
choice = result["choices"][0]
generated_this_cycle = choice.get("message", {}).get("content", "")
finish_reason = choice.get("finish_reason", "unknown")
else:
logger.error(f"Invalid response structure from llama_cpp in non-streaming cycle {cycle_number}: {result}", extra={'request_id': request_id})
return jsonify(error="Generation failed", detail=f"Invalid response structure from model in cycle {cycle_number}."), 500
usage_this_cycle = result.get("usage", {})
final_finish_reason = finish_reason
if usage_this_cycle: final_usage = usage_this_cycle
logger.info(f"Non-streaming cycle {cycle_number} finished. Reason: {finish_reason}. Usage: {usage_this_cycle}", extra={'request_id': request_id, 'usage': usage_this_cycle, 'finish_reason': finish_reason})
if finish_reason == 'length':
hit_context_limit_in_cycle = True
except Exception as e:
err_str = str(e).lower()
if "context window is full" in err_str or \
"kv cache is full" in err_str or \
"llama_decode" in err_str or \
(hasattr(e, 'condition') and ("context length" in str(e.condition).lower() or "failed to decode" in str(e.condition).lower())):
logger.warning(f"N_CTX limit or related exception caught during non-streaming cycle {cycle_number}: {e}", extra={'request_id': request_id})
hit_context_limit_in_cycle = True
finish_reason = 'length'
else:
logger.error(f"Unhandled error during non-streaming cycle {cycle_number}: {e}", exc_info=True, extra={'request_id': request_id})
return jsonify(error="Generation failed", detail=f"Internal error in cycle {cycle_number}: {str(e)}"), 500
if generated_this_cycle:
if continuations > 0 and full_generated_text:
full_generated_text += f"\n\n[CONTINUATION {continuations} - TRUNCATED CONTEXT]\n\n"
full_generated_text += generated_this_cycle
tokens_generated_cycle = usage_this_cycle.get("completion_tokens", 0)
total_tokens_generated_nonstream += tokens_generated_cycle
if not current_messages or current_messages[-1].get('role') != 'assistant':
current_messages.append({"role": "assistant", "content": generated_this_cycle})
else:
current_messages[-1]['content'] += generated_this_cycle
elif hit_context_limit_in_cycle:
logger.warning(f"Non-streaming N_CTX limit hit in cycle {cycle_number} but no completion tokens reported.", extra={'request_id': request_id})
if continuations > 0 and full_generated_text:
full_generated_text += f"\n\n[CONTINUATION {continuations} - TRUNCATED CONTEXT - NO OUTPUT THIS CYCLE]\n\n"
elif not finish_reason:
logger.warning(f"Non-streaming cycle {cycle_number} ended without generating tokens or a finish reason. Stopping.", extra={'request_id': request_id})
full_generated_text += f"\n[INFO: Generation stopped: Cycle {cycle_number} ended unexpectedly.]"
break
if finish_reason == 'stop':
logger.info(f"Non-streaming generation stopped naturally (reason: stop) in cycle {cycle_number}.", extra={'request_id': request_id})
break
elif hit_context_limit_in_cycle:
continuations += 1
logger.warning(f"Non-streaming N_CTX limit reached in cycle {cycle_number}. Attempting continuation {continuations} (reinicio de contador).", extra={'request_id': request_id})
current_messages = truncate_messages_for_context(current_messages, effective_n_ctx, CONTEXT_TRUNCATION_BUFFER_RATIO)
if not current_messages:
logger.error("Context truncation resulted in empty messages during non-streaming. Stopping.", extra={'request_id': request_id})
full_generated_text += f"\n[ERROR: Generation failed: Context truncation error.]"
final_finish_reason = "truncation_error"
break
continue
else:
logger.warning(f"Non-streaming cycle {cycle_number} ended with reason '{finish_reason}' or unexpectedly. Stopping generation.", extra={'request_id': request_id, 'finish_reason': finish_reason})
full_generated_text += f"\n\n[INFO: Generation stopped unexpectedly. Reason: {finish_reason or 'Unknown'}]"
break
logger.info(f"Non-streaming generation finished after {continuations} continuations. Total completion tokens reported: {total_tokens_generated_nonstream}. Final reason: {final_finish_reason}", extra={'request_id': request_id, 'continuations': continuations, 'total_completion_tokens': total_tokens_generated_nonstream, 'final_reason': final_finish_reason})
response = Response(full_generated_text, mimetype="text/plain; charset=utf-8")
response.headers["X-Request-ID"] = request_id
response.headers["X-Finish-Reason"] = final_finish_reason
response.headers["X-Continuations"] = str(continuations)
total_prompt_tokens = final_usage.get("prompt_tokens", "N/A")
response.headers["X-Usage-Completion-Tokens"] = str(total_tokens_generated_nonstream)
response.headers["X-Usage-Prompt-Tokens-Last-Cycle"] = str(total_prompt_tokens)
response.headers["X-Usage-Total-Tokens-Last-Cycle"] = str(final_usage.get("total_tokens", "N/A"))
return response
if __name__ == "__main__":
host = os.getenv("HOST", "0.0.0.0")
port = int(os.getenv("PORT", "7860"))
is_debug = os.getenv("FLASK_DEBUG", "0") == "1"
log_level = logging.DEBUG if is_debug else logging.INFO
logger.setLevel(log_level)
logger.info(f"Starting Flask server on {host}:{port} (Debug mode: {is_debug})")
logger.info(f"Model: {MODEL_REPO}/{MODEL_FILE}, N_CTX={N_CTX}, Automatic Continuations: UNLIMITED (with context truncation)")
if not llm:
logger.critical("MODEL FAILED TO LOAD. SERVER WILL START BUT '/generate' WILL FAIL.")
if not is_debug:
try:
from waitress import serve
logger.info("Running with Waitress production server.")
serve(app, host=host, port=port, threads=8)
except ImportError:
logger.warning("Waitress not found. Falling back to Flask development server. Install waitress for production.")
app.run(host=host, port=port, threaded=True, debug=is_debug)
else:
logger.info("Running with Flask development server (Debug=True).")
app.run(host=host, port=port, threaded=True, debug=is_debug, use_reloader=False) |