Spaces:
Running
Running
File size: 56,253 Bytes
84011cd d4f31e1 84011cd 9cc851e c64a3c0 84011cd d4f31e1 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd d4f31e1 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 d4f31e1 c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 d4f31e1 84011cd d4f31e1 c64a3c0 84011cd d4f31e1 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd d4f31e1 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd d4f31e1 c64a3c0 84011cd c64a3c0 84011cd c64a3c0 d4f31e1 c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 d4f31e1 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd d4f31e1 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 d4f31e1 c64a3c0 d4f31e1 c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd d4f31e1 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd c64a3c0 84011cd d4f31e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import os
import json
import logging
import uuid
from typing import List, Dict, Union, Optional, Generator, Any
import random
import time
from flask import Flask, request, Response, stream_with_context, jsonify, g, render_template_string
from llama_cpp import Llama
class JsonFormatter(logging.Formatter):
def format(self, record):
log_record = {
"timestamp": self.formatTime(record, self.datefmt),
"level": record.levelname,
"name": record.name,
"message": record.getMessage(),
"pathname": record.pathname,
"lineno": record.lineno,
}
if hasattr(record, 'request_id'):
log_record['request_id'] = record.request_id
if record.exc_info:
log_record['exception'] = self.formatException(record.exc_info)
if record.stack_info:
log_record['stack_info'] = self.formatStack(record.stack_info)
skip_keys = {'message', 'asctime', 'levelname', 'levelno', 'pathname', 'filename', 'module', 'funcName', 'lineno', 'created', 'msecs', 'relativeCreated', 'thread', 'threadName', 'process', 'processName', 'exc_info', 'exc_text', 'stack_info', 'request_id'}
for key, value in record.__dict__.items():
if not key.startswith('_') and key not in log_record and key not in skip_keys:
# Ensure value is JSON serializable
try:
json.dumps(value)
log_record[key] = value
except TypeError:
log_record[key] = str(value) # Convert non-serializable types to string
except Exception:
log_record[key] = "[Unserializable Value]"
return json.dumps(log_record)
def setup_logging():
logger = logging.getLogger()
if not logger.handlers:
handler = logging.StreamHandler()
formatter = JsonFormatter()
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.setLevel(logging.INFO)
logging.getLogger("werkzeug").setLevel(logging.ERROR)
logging.getLogger("llama_cpp").setLevel(logging.WARNING)
return logger
logger = setup_logging()
MODEL_REPO = os.getenv("MODEL_REPO", "jnjj/vcvcvcv")
MODEL_FILE = os.getenv("MODEL_FILE", "gemma-3-4b-it-q4_0.gguf")
N_CTX_CONFIG = int(os.getenv("N_CTX", "2048"))
N_BATCH = int(os.getenv("N_BATCH", "512"))
N_GPU_LAYERS_CONFIG = int(os.getenv("N_GPU_LAYERS", "0"))
MAX_CONTINUATIONS = int(os.getenv("MAX_CONTINUATIONS", "-1"))
FIXED_REPEAT_PENALTY = float(os.getenv("FIXED_REPEAT_PENALTY", "1.1"))
FIXED_SEED = int(os.getenv("FIXED_SEED", "-1"))
DEFAULT_SYSTEM_PROMPT = os.getenv("DEFAULT_SYSTEM_PROMPT", "Eres un asistente conciso, directo y útil.")
CONTEXT_TRUNCATION_BUFFER_RATIO = float(os.getenv("CONTEXT_TRUNCATION_BUFFER_RATIO", "0.85"))
RANDOM_PARAMS_CHOICES = [
{"temperature": 0.2, "top_p": 0.5, "top_k": 10},
{"temperature": 0.1, "top_p": 0.5, "top_k": 10},
{"temperature": 0.3, "top_p": 0.5, "top_k": 10},
{"temperature": 0.4, "top_p": 0.5, "top_k": 10},
{"temperature": 0.6, "top_p": 0.3, "top_k": 5},
{"temperature": 0.5, "top_p": 0.7, "top_k": 20},
]
llm: Optional[Llama] = None
ACTUAL_N_CTX: int = N_CTX_CONFIG
ACTUAL_N_BATCH: int = N_BATCH
ACTUAL_N_GPU_LAYERS: int = N_GPU_LAYERS_CONFIG
class ContextLimitException(Exception):
pass
class GenerationFailedException(Exception):
pass
def prepare_messages(data: Dict, format: Optional[str] = None, request_id: str = 'N/A') -> List[Dict[str, str]]:
messages_list = data.get("messages")
prompt_str = data.get("prompt")
system_instruction = data.get("system_prompt", DEFAULT_SYSTEM_PROMPT)
if not messages_list and not prompt_str:
raise ValueError("Either 'messages' list or 'prompt' string is required.")
if messages_list is not None and not isinstance(messages_list, list):
raise ValueError("'messages' must be a list of dictionaries.")
if prompt_str is not None and not isinstance(prompt_str, str):
raise ValueError("'prompt' must be a string.")
if system_instruction is not None and not isinstance(system_instruction, str):
raise ValueError("'system_prompt' must be a string.")
final_messages = []
content_format_instruction = ""
if format == "markdown":
content_format_instruction = " Format your response using Markdown."
elif format is not None:
logger.warning(f"Unsupported format '{format}' requested.", extra={'request_id': request_id, 'format': format})
effective_system_prompt_content = system_instruction.strip() + content_format_instruction.strip()
if effective_system_prompt_content:
final_messages.append({"role": "system", "content": effective_system_prompt_content})
if messages_list:
has_user_message = False
for i, msg in enumerate(messages_list):
if not isinstance(msg, dict) or "role" not in msg or "content" not in msg:
raise ValueError(f"Message at index {i} is invalid: must be a dictionary with 'role' and 'content'.")
role = msg.get("role")
content = msg.get("content", "")
if not isinstance(content, str):
logger.warning(f"Message content at index {i} (role: {role}) is not a string (type: {type(content)}). Converting to string.", extra={'request_id': request_id, 'message_index': i, 'role': role, 'content_type': type(content)})
content = str(content)
if role == "system":
if i == 0 and final_messages and final_messages[0]["role"] == "system":
logger.info("Replacing default system prompt with user-provided system message.", extra={'request_id': request_id})
final_messages[0]["content"] = content
elif i == 0 and not final_messages:
final_messages.append({"role": "system", "content": content})
else:
logger.warning(f"Ignoring additional system message at index {i} as system prompt is already set or should be at the start.", extra={'request_id': request_id, 'message_index': i})
continue
elif role == "user":
has_user_message = True
final_messages.append({"role": role, "content": content})
if not has_user_message and any(m["role"] != "system" for m in final_messages):
logger.warning("The 'messages' list contains no user messages.", extra={'request_id': request_id})
elif prompt_str:
final_messages.append({"role": "user", "content": prompt_str})
if not final_messages or all(m["role"] == "system" for m in final_messages):
raise ValueError("No user or assistant messages found to generate a response.")
return final_messages
def estimate_token_count(messages: List[Dict[str, str]], request_id: str = 'N/A') -> int:
if not llm or not hasattr(llm, 'tokenize') or not hasattr(llm, 'apply_chat_template'):
logger.warning("LLM or tokenizer/template function not available for token estimation.", extra={'request_id': request_id})
return -1
try:
chat_prompt_string = llm.apply_chat_template(messages, add_generation_prompt=True)
tokens = llm.tokenize(chat_prompt_string.encode('utf-8', errors='ignore'), add_bos=True)
return len(tokens)
except Exception as e:
logger.error(f"Could not estimate token count using apply_chat_template: {e}", exc_info=True, extra={'request_id': request_id})
char_count = sum(len(m.get('content', '')) for m in messages)
estimated_tokens = char_count // 4
logger.warning(f"Falling back to character-based token estimation (~{estimated_tokens})", extra={'request_id': request_id, 'estimated_tokens': estimated_tokens, 'char_count': char_count})
return estimated_tokens
def get_effective_n_ctx() -> int:
return ACTUAL_N_CTX
def truncate_messages_for_context(messages: List[Dict[str, str]], max_tokens: int, buffer_ratio: float, request_id: str = 'N/A') -> List[Dict[str, str]]:
if not llm: return messages
target_token_limit = int(max_tokens * buffer_ratio)
truncated_messages: List[Dict[str, str]] = []
system_prompt: Optional[Dict[str, str]] = None
if messages and messages[0].get("role") == "system":
system_prompt = messages[0]
truncated_messages.append(system_prompt)
remaining_messages = messages[1:]
else:
remaining_messages = messages
current_token_count = estimate_token_count(truncated_messages, request_id=request_id) if truncated_messages else 0
if current_token_count == -1:
logger.warning("Could not estimate initial token count for truncation, proceeding cautiously with char estimate.", extra={'request_id': request_id})
current_token_count = sum(len(m.get('content', '')) for m in truncated_messages) // 4
messages_to_add = []
for msg in reversed(remaining_messages):
potential_list = ([system_prompt] if system_prompt else []) + [msg] + messages_to_add
next_token_count = estimate_token_count(potential_list, request_id=request_id)
if next_token_count != -1 and next_token_count <= target_token_limit:
messages_to_add.insert(0, msg)
current_token_count = next_token_count
elif next_token_count == -1:
logger.warning(f"Token estimation failed while adding message: {msg}. Stopping truncation early.", extra={'request_id': request_id})
break
else:
logger.debug(f"Stopping truncation: Adding next message would exceed target limit ({next_token_count} > {target_token_limit}).", extra={'request_id': request_id})
break
final_truncated_list = ([system_prompt] if system_prompt else []) + messages_to_add
original_count = len(messages)
final_count = len(final_truncated_list)
if not final_truncated_list or all(m.get("role") == "system" for m in final_truncated_list):
if any(m.get("role") == "user" for m in messages):
last_user_message = next((m for m in reversed(messages) if m.get("role") == "user"), None)
if last_user_message:
logger.warning("Truncation resulted in empty or system-only messages, attempting to keep last user message.", extra={'request_id': request_id})
final_truncated_list = ([system_prompt] if system_prompt else []) + [last_user_message]
final_count = len(final_truncated_list)
current_token_count = estimate_token_count(final_truncated_list, request_id=request_id)
if final_count < original_count:
logger.warning(f"Context truncated: Kept {final_count}/{original_count} messages. Estimated tokens: ~{current_token_count}/{target_token_limit} (target).",
extra={'request_id': request_id, 'kept': final_count, 'original': original_count, 'estimated_tokens': current_token_count, 'target_limit': target_token_limit})
else:
logger.debug(f"Context truncation check complete. Kept all {final_count} messages. Estimated tokens: ~{current_token_count}.",
extra={'request_id': request_id, 'kept': final_count, 'estimated_tokens': current_token_count})
if not final_truncated_list:
logger.error("Context truncation resulted in an empty message list!", extra={'request_id': request_id})
return []
return final_truncated_list
def get_property_or_method_value(obj: Any, prop_name: str, default: Any = None) -> Any:
"""Safely get property value or call method if callable."""
if hasattr(obj, prop_name):
prop = getattr(obj, prop_name)
if callable(prop):
try:
return prop()
except Exception:
logger.warning(f"Error calling method {prop_name} on {type(obj)}", exc_info=True)
return default
else:
return prop
return default
def load_model():
global llm, ACTUAL_N_CTX, ACTUAL_N_BATCH, ACTUAL_N_GPU_LAYERS
logger.info(f"Attempting to load model: {MODEL_REPO}/{MODEL_FILE}")
logger.info(f"Configuration: N_CTX={N_CTX_CONFIG}, N_BATCH={N_BATCH}, N_GPU_LAYERS={N_GPU_LAYERS_CONFIG}")
try:
llm = Llama.from_pretrained(
repo_id=MODEL_REPO,
filename=MODEL_FILE,
n_ctx=N_CTX_CONFIG,
n_batch=N_BATCH,
n_gpu_layers=N_GPU_LAYERS_CONFIG,
verbose=False,
use_mmap=True,
use_mlock=True,
)
logger.info("Model loaded successfully.")
if llm:
ACTUAL_N_CTX = get_property_or_method_value(llm, 'n_ctx', N_CTX_CONFIG)
ACTUAL_N_BATCH = get_property_or_method_value(llm, 'n_batch', N_BATCH)
ACTUAL_N_GPU_LAYERS = get_property_or_method_value(llm, 'n_gpu_layers', 0)
if ACTUAL_N_CTX != N_CTX_CONFIG:
logger.warning(f"Model's actual context size ({ACTUAL_N_CTX}) differs from config ({N_CTX_CONFIG}). Using actual.", extra={'actual_n_ctx': ACTUAL_N_CTX, 'configured_n_ctx': N_CTX_CONFIG})
if ACTUAL_N_GPU_LAYERS != N_GPU_LAYERS_CONFIG:
logger.warning(f"Model loaded with {ACTUAL_N_GPU_LAYERS} GPU layers despite requesting {N_GPU_LAYERS_CONFIG}. Check llama.cpp build or environment.", extra={'actual_gpu_layers': ACTUAL_N_GPU_LAYERS, 'configured_gpu_layers': N_GPU_LAYERS_CONFIG})
logger.info(f"Actual Model Context Window (n_ctx): {ACTUAL_N_CTX}")
logger.info(f"Actual Model Batch Size (n_batch): {ACTUAL_N_BATCH}")
logger.info(f"Actual Model GPU Layers (n_gpu_layers): {ACTUAL_N_GPU_LAYERS}")
try:
test_tokens = llm.tokenize(b"Test sentence.")
logger.info(f"Tokenizer test successful. 'Test sentence.' -> {len(test_tokens)} tokens.")
except Exception as tokenize_e:
logger.warning(f"Could not perform test tokenization: {tokenize_e}")
except Exception as e:
logger.error(f"Fatal error loading model: {e}", exc_info=True)
llm = None
logger.error("Model failed to load. Generation requests will not work.", extra={'error': str(e)})
app = Flask(__name__)
@app.before_request
def before_request_func():
g.request_id = str(uuid.uuid4())
logger.debug(f"Incoming request: {request.method} {request.path} from {request.remote_addr}", extra={'request_id': g.request_id, 'path': request.path, 'method': request.method})
load_model()
html_code = """
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>LLM API Demo</title>
<style>
body { font-family: sans-serif; margin: 20px; line-height: 1.6; background-color: #f4f4f4; color: #333; }
.container { max-width: 800px; margin: auto; background: #fff; padding: 20px; border-radius: 8px; box-shadow: 0 2px 5px rgba(0,0,0,0.1); }
h1, h2 { color: #0056b3; }
.section { margin-bottom: 30px; padding: 20px; background-color: #e9e9e9; border-radius: 5px; }
label { display: block; margin-bottom: 5px; font-weight: bold; }
input[type="text"], input[type="number"], textarea, select {
width: calc(100% - 22px); padding: 10px; margin-bottom: 10px; border: 1px solid #ccc; border-radius: 4px;
}
textarea { resize: vertical; min-height: 100px; }
button {
display: inline-block; background-color: #007bff; color: white; padding: 10px 15px; border: none; border-radius: 4px; cursor: pointer; font-size: 16px;
margin-right: 10px; transition: background-color 0.3s ease;
}
button:hover { background-color: #0056b3; }
button:disabled { background-color: #cccccc; cursor: not-allowed; }
.output {
background-color: #f9f9f9; border: 1px solid #ddd; padding: 15px; border-radius: 4px; white-space: pre-wrap; word-wrap: break-word; max-height: 400px; overflow-y: auto; font-family: monospace;
}
.error { color: red; font-weight: bold; }
.info { color: green; }
.warning { color: orange; }
.param-info { font-style: italic; color: #555; margin-bottom: 10px; }
.checkbox-container { display: flex; align-items: center; margin-bottom: 10px; }
.checkbox-container input { margin-right: 5px; width: auto; }
.continuation-info { font-weight: bold; }
</style>
</head>
<body>
<div class="container">
<h1>LLM API Demonstration</h1>
<div class="section">
<h2>Health Check</h2>
<button id="healthCheckBtn">Check Health</button>
<p id="healthStatus"></p>
</div>
<div class="section">
<h2>API Info</h2>
<button id="apiInfoBtn">Get Info</button>
<pre id="apiInfoOutput" class="output"></pre>
</div>
<div class="section">
<h2>Generate Text (Automatic Continuation with Context Management)</h2>
<label for="promptInput">Prompt / First User Message:</label>
<textarea id="promptInput" placeholder="Enter your prompt here..."></textarea>
<div class="param-info">Note: No artificial token limit. Generation continues until the model stops naturally, hits a stop sequence, or reaches the context window limit (N_CTX={{ ACTUAL_N_CTX }}). If the context limit is reached, the server will attempt to continue automatically by <strong class="continuation-info">truncating older messages (unlimited continuations)</strong>. Other parameters (Temperature, Top P, Top K, Repeat Penalty, Seed) are fixed/random per generation cycle.</div>
<div>
<label for="stopInput">Stop Sequences (comma-separated):</label>
<input type="text" id="stopInput" value="">
</div>
<div>
<label for="systemPromptInput">System Prompt (Optional Override - default: "{{ DEFAULT_SYSTEM_PROMPT | escape }}"):</label>
<input type="text" id="systemPromptInput" placeholder="Leave empty to use default">
</div>
<div>
<label for="formatSelect">Format:</label>
<select id="formatSelect">
<option value="">None</option>
<option value="markdown">Markdown</option>
</select>
</div>
<div class="checkbox-container">
<input type="checkbox" id="streamCheckbox" checked>
<label for="streamCheckbox">Stream Output</label>
</div>
<button id="generateBtn">Generate</button>
<p id="generationStatus"></p>
<pre id="generationOutput" class="output"></pre>
</div>
</div>
<script>
const healthCheckBtn = document.getElementById('healthCheckBtn');
const healthStatus = document.getElementById('healthStatus');
const apiInfoBtn = document.getElementById('apiInfoBtn');
const apiInfoOutput = document.getElementById('apiInfoOutput');
const promptInput = document.getElementById('promptInput');
const stopInput = document.getElementById('stopInput');
const systemPromptInput = document.getElementById('systemPromptInput');
const formatSelect = document.getElementById('formatSelect');
const streamCheckbox = document.getElementById('streamCheckbox');
const generateBtn = document.getElementById('generateBtn');
const generationOutput = document.getElementById('generationOutput');
const generationStatus = document.getElementById('generationStatus');
const API_BASE_URL = window.location.origin;
async function checkHealth() {
healthStatus.textContent = 'Checking...';
healthStatus.className = '';
try {
const response = await fetch(`${API_BASE_URL}/health`);
const data = await response.json();
healthStatus.textContent = `Status: ${data.status}, Message: ${data.message}`;
healthStatus.className = data.status === 'ok' ? 'info' : (data.status === 'warning' ? 'warning' : 'error');
} catch (error) {
healthStatus.textContent = `Error fetching health: ${error}`;
healthStatus.className = 'error';
}
}
async function getApiInfo() {
apiInfoOutput.textContent = 'Loading...';
apiInfoOutput.className = 'output';
try {
const response = await fetch(`${API_BASE_URL}/info`);
if (!response.ok) {
try {
const errorData = await response.json();
throw new Error(`API Error ${response.status}: ${errorData.error || JSON.stringify(errorData)}`);
} catch (e) {
throw new Error(`API Error ${response.status}: ${response.statusText}`);
}
}
const data = await response.json();
const nCtx = data?.model_config?.loaded_model_details?.n_ctx || '{{ ACTUAL_N_CTX }}';
const maxCont = data?.generation_parameters?.max_automatic_continuations;
const maxContDesc = maxCont === null ? "unlimited continuations" : `up to ${maxCont} times`;
const description = document.querySelector('.param-info');
if (description) {
description.innerHTML = `Note: No artificial token limit. Generation continues until the model stops naturally, hits a stop sequence, or reaches the context window limit (N_CTX=${nCtx}). If the context limit is reached, the server will attempt to continue automatically by <strong class="continuation-info">truncating older messages (${maxContDesc})</strong>. Other parameters (Temperature, Top P, Top K, Repeat Penalty, Seed) are fixed/random per generation cycle.`;
}
apiInfoOutput.textContent = JSON.stringify(data, null, 2);
} catch (error) {
apiInfoOutput.textContent = `Error fetching info: ${error}`;
apiInfoOutput.className = 'output error';
}
}
async function generateText() {
generationOutput.textContent = '';
generationStatus.textContent = 'Preparing request...';
generationStatus.className = '';
generateBtn.disabled = true;
const prompt = promptInput.value;
if (!prompt.trim()) {
generationStatus.textContent = 'Error: Prompt cannot be empty.';
generationStatus.className = 'error';
generateBtn.disabled = false;
return;
}
const messages = [{"role": "user", "content": prompt}];
const stream = streamCheckbox.checked;
const format = formatSelect.value || undefined;
const stopSequences = stopInput.value.split(',').map(s => s.trim()).filter(s => s.length > 0);
const stop = stopSequences.length > 0 ? stopSequences : undefined;
const systemPrompt = systemPromptInput.value.trim() || undefined;
const requestBody = {
messages: messages,
stop: stop,
stream: stream,
format: format,
system_prompt: systemPrompt
};
generationStatus.textContent = 'Generating... (may continue automatically with context truncation if needed)';
generationStatus.className = 'info';
try {
const response = await fetch(`${API_BASE_URL}/generate`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify(requestBody),
});
if (!response.ok) {
const errorText = await response.text();
let errorMessage = `Error: ${response.status} ${response.statusText}`;
try {
const errorData = JSON.parse(errorText);
errorMessage += ` - ${errorData.error || JSON.stringify(errorData.detail || errorData)}`;
} catch (jsonParseError) {
errorMessage += ` - ${errorText}`;
}
generationStatus.textContent = errorMessage;
generationStatus.className = 'error';
generateBtn.disabled = false;
return;
}
if (stream) {
const reader = response.body.getReader();
const decoder = new TextDecoder('utf-8');
let finished = false;
generationOutput.textContent = '';
let continuationCount = 0;
let lastStatusUpdate = Date.now();
while (!finished) {
const { done, value } = await reader.read();
if (done) {
finished = true;
if (!generationStatus.textContent.includes("finished") && !generationStatus.textContent.includes("stopped") && !generationStatus.textContent.includes("Error") && !generationStatus.textContent.includes("Max continuations")) {
generationStatus.textContent = `Streaming finished. Total continuations: ${continuationCount}.`;
generationStatus.className = 'info';
}
break;
}
const chunk = decoder.decode(value, { stream: true });
const continueMatch = chunk.match(/\n\[CONTINUING (\d+) - TRUNCATING CONTEXT\.\.\.\]\n/);
const errorMatch = chunk.match(/\n\[ERROR\](.*)/);
const infoMatch = chunk.match(/\n\[INFO\](.*)/);
if (continueMatch) {
continuationCount = parseInt(continueMatch[1]);
generationOutput.textContent += chunk;
generationStatus.textContent = `Context limit reached, truncating history and continuing generation (Continuation #${continuationCount})...`;
generationStatus.className = 'warning continuation-info';
lastStatusUpdate = Date.now();
} else if (errorMatch) {
generationOutput.textContent += chunk;
generationStatus.textContent = `Error during generation: ${errorMatch[1]}`;
generationStatus.className = 'error';
finished = true;
} else if (infoMatch) {
generationOutput.textContent += chunk;
generationStatus.textContent = `Generation info: ${infoMatch[1]}. Total continuations: ${continuationCount}.`;
generationStatus.className = 'info';
if (infoMatch[1].includes("stopped") || infoMatch[1].includes("finished") || infoMatch[1].includes("Max continuations")) {
finished = true;
}
lastStatusUpdate = Date.now();
}
else {
generationOutput.textContent += chunk;
if (Date.now() - lastStatusUpdate > 1000 && !generationStatus.className.includes('warning') && !generationStatus.className.includes('error')) {
generationStatus.textContent = `Streaming... (Continuation #${continuationCount})`;
generationStatus.className = 'info';
lastStatusUpdate = Date.now();
}
}
generationOutput.scrollTop = generationOutput.scrollHeight;
}
} else {
const text = await response.text();
const finishReason = response.headers.get('X-Finish-Reason');
const continuations = response.headers.get('X-Continuations');
const usageCompletionTokens = response.headers.get('X-Usage-Completion-Tokens');
generationOutput.textContent = text;
let statusText = `Generation finished. Reason: ${finishReason || 'unknown'}.`;
const contCount = parseInt(continuations || '0');
if (contCount > 0) {
statusText += ` Continuations: ${contCount} (context truncated).`;
generationStatus.className = 'warning continuation-info';
} else {
generationStatus.className = 'info';
}
if (usageCompletionTokens && usageCompletionTokens !== 'N/A') statusText += ` Completion Tokens: ~${usageCompletionTokens}.`;
if (text.includes("[ERROR]")) {
statusText = "Generation finished with errors. See output."
generationStatus.className = 'error';
}
generationStatus.textContent = statusText;
}
} catch (error) {
generationStatus.textContent = `Network or processing error: ${error}`;
generationStatus.className = 'error';
generationOutput.textContent += `\n\n[ERROR] Network or processing error: ${error}`;
} finally {
generateBtn.disabled = false;
}
}
healthCheckBtn.addEventListener('click', checkHealth);
apiInfoBtn.addEventListener('click', getApiInfo);
generateBtn.addEventListener('click', generateText);
checkHealth();
getApiInfo();
</script>
</body>
</html>
"""
@app.route("/")
def index():
rendered_html = render_template_string(
html_code,
ACTUAL_N_CTX=ACTUAL_N_CTX,
DEFAULT_SYSTEM_PROMPT=DEFAULT_SYSTEM_PROMPT
)
return rendered_html
@app.route("/health", methods=["GET"])
def health_check():
if llm:
if hasattr(llm, 'tokenize') and hasattr(llm, 'apply_chat_template'):
return jsonify(status="ok", message="Model is loaded and ready."), 200
else:
logger.warning("Model loaded, but tokenizer or chat template functions might be missing.", extra={'request_id': getattr(g, 'request_id', 'N/A')})
return jsonify(status="warning", message="Model loaded, but critical functions (tokenize/apply_chat_template) might be missing."), 200
else:
return jsonify(status="error", message="Model failed to load or is not available."), 503
@app.route("/info", methods=["GET"])
def model_info():
request_id = getattr(g, 'request_id', 'N/A')
if not llm:
logger.warning("Info request received but model is not loaded.", extra={'request_id': request_id})
return jsonify(error="Model not available."), 503
model_details: Union[Dict[str, Any], str] = "Model details unavailable"
try:
n_embd = get_property_or_method_value(get_property_or_method_value(llm, '_model'), 'n_embd', 'N/A')
model_details = {
"n_embd": n_embd,
"n_ctx": ACTUAL_N_CTX,
"n_batch": ACTUAL_N_BATCH,
"n_gpu_layers": ACTUAL_N_GPU_LAYERS,
"tokenizer_present": hasattr(llm, 'tokenize'),
"chat_handler_present": hasattr(llm, 'apply_chat_template') and hasattr(llm, 'create_chat_completion'),
}
except Exception as e:
logger.warning(f"Could not retrieve all model details: {e}", extra={'request_id': request_id}, exc_info=True)
model_details = f"Error retrieving some model details: {e}"
info = {
"status": "ok",
"message": "Model is loaded. Generation continues automatically with context truncation if context limit is hit.",
"model_config": {
"repo_id": MODEL_REPO,
"filename": MODEL_FILE,
"initial_load_config": {
"n_ctx": N_CTX_CONFIG,
"n_batch": N_BATCH,
"n_gpu_layers": N_GPU_LAYERS_CONFIG,
},
"loaded_model_details": model_details,
},
"generation_parameters": {
"note": f"No artificial 'max_tokens' limit. Generation proceeds until stop sequence, EOS, or context limit (N_CTX={ACTUAL_N_CTX}). Automatic continuation attempts by truncating context occur up to {MAX_CONTINUATIONS if MAX_CONTINUATIONS >= 0 else 'unlimited'} times if context limit is reached. Sampling parameters (temperature, top_p, top_k) are chosen randomly per request/continuation cycle from predefined sets. Repeat penalty and seed are fixed.",
"fixed_max_tokens": None,
"fixed_repeat_penalty": FIXED_REPEAT_PENALTY,
"fixed_seed": FIXED_SEED,
"max_automatic_continuations": MAX_CONTINUATIONS if MAX_CONTINUATIONS >= 0 else None,
"context_truncation_buffer_ratio": CONTEXT_TRUNCATION_BUFFER_RATIO,
"randomly_chosen_from": RANDOM_PARAMS_CHOICES,
"default_system_prompt": DEFAULT_SYSTEM_PROMPT,
"user_controllable": ["messages", "prompt", "stop", "stream", "format", "system_prompt"],
},
}
return jsonify(info), 200
def _generate_single_cycle(messages: List[Dict[str, str]], params: Dict, stream: bool, request_id: str) -> Union[Generator[Dict, None, None], Dict]:
try:
logger.debug(f"Starting llama.cpp chat completion call. Stream: {stream}. Messages: {len(messages)}. Params summary: temp={params.get('temperature')}, top_p={params.get('top_p')}, top_k={params.get('top_k')}, stop={params.get('stop')}", extra={'request_id': request_id, 'stream': stream, 'message_count': len(messages)})
result = llm.create_chat_completion(
messages=messages,
max_tokens=params["max_tokens"],
temperature=params["temperature"],
top_p=params["top_p"],
top_k=params["top_k"],
repeat_penalty=params["repeat_penalty"],
stop=params["stop"],
seed=params["seed"],
stream=stream,
)
return result
except Exception as e:
err_str = str(e).lower()
if "context window is full" in err_str or \
"kv cache is full" in err_str or \
"llama_decode" in err_str or \
(hasattr(e, 'condition') and isinstance(e.condition, str) and ("context length" in e.condition.lower() or "failed to decode" in e.condition.lower())):
logger.warning(f"Caught N_CTX limit or related exception: {e}", extra={'request_id': request_id})
raise ContextLimitException(str(e)) from e
else:
logger.error(f"Unhandled error during llama.cpp call: {e}", exc_info=True, extra={'request_id': request_id})
raise GenerationFailedException(f"Unhandled llama.cpp error: {str(e)}") from e
@app.route("/generate", methods=["POST"])
def generate():
request_id = getattr(g, 'request_id', 'N/A')
if not llm:
logger.error("Generate request received but model is not loaded.", extra={'request_id': request_id})
return jsonify(error="Model is not available.", detail="The LLM model could not be loaded."), 503
if not request.is_json:
logger.warning("Request received without Content-Type: application/json", extra={'request_id': request_id})
return jsonify(error="Invalid request header", detail="Content-Type must be application/json"), 415
data = request.get_json()
is_streaming = data.get("stream", True)
response_format = data.get("format")
log_data_summary = {k: v for k, v in data.items() if k not in ('messages', 'prompt')}
log_data_summary['messages_count_initial'] = len(data.get('messages', [])) if 'messages' in data else 0
log_data_summary['has_prompt_initial'] = 'prompt' in data
log_data_summary['stream'] = is_streaming
log_data_summary['format'] = response_format
logger.info(f"Received generation request summary.", extra={'request_id': request_id, 'summary': log_data_summary})
try:
initial_messages = prepare_messages(data, format=response_format, request_id=request_id)
base_params: Dict[str, Any] = {
"max_tokens": None,
"repeat_penalty": FIXED_REPEAT_PENALTY,
"seed": FIXED_SEED,
}
stop = data.get("stop")
if stop is not None:
if isinstance(stop, list) and all(isinstance(s, str) for s in stop):
base_params["stop"] = stop
elif isinstance(stop, str):
base_params["stop"] = [stop]
else:
raise ValueError({"stop": "Stop must be a string or a list of strings"})
else:
base_params["stop"] = None
effective_n_ctx = get_effective_n_ctx()
input_token_count = estimate_token_count(initial_messages, request_id=request_id)
if input_token_count != -1 and input_token_count > effective_n_ctx * CONTEXT_TRUNCATION_BUFFER_RATIO:
logger.warning(f"Initial input (~{input_token_count} tokens) likely exceeds safe context window ({int(effective_n_ctx * CONTEXT_TRUNCATION_BUFFER_RATIO)}). Attempting truncation.", extra={'request_id': request_id, 'initial_tokens': input_token_count, 'n_ctx': effective_n_ctx, 'buffer_ratio': CONTEXT_TRUNCATION_BUFFER_RATIO})
truncated_initial = truncate_messages_for_context(initial_messages, effective_n_ctx, CONTEXT_TRUNCATION_BUFFER_RATIO, request_id=request_id)
truncated_token_count = estimate_token_count(truncated_initial, request_id=request_id)
if not truncated_initial or (truncated_token_count != -1 and truncated_token_count > effective_n_ctx):
error_msg = f"Input exceeds context window ({effective_n_ctx}) even after attempting truncation. Input tokens (~{input_token_count}) / Truncated tokens (~{truncated_token_count}). Reduce initial message size."
logger.error(error_msg, extra={'request_id': request_id, 'initial_tokens': input_token_count, 'truncated_tokens': truncated_token_count, 'n_ctx': effective_n_ctx})
return jsonify(error="Input exceeds context window", detail=error_msg), 400
else:
logger.info(f"Initial input truncated from ~{input_token_count} to ~{truncated_token_count} tokens.", extra={'request_id': request_id, 'initial_tokens': input_token_count, 'truncated_tokens': truncated_token_count, 'n_ctx': effective_n_ctx})
initial_messages = truncated_initial
input_token_count = truncated_token_count
elif input_token_count != -1:
logger.info(f"Initial input token count: ~{input_token_count}. Effective context window: {effective_n_ctx}. Context buffer target: {int(effective_n_ctx * CONTEXT_TRUNCATION_BUFFER_RATIO)}. Remaining: {effective_n_ctx - input_token_count}.", extra={'request_id': request_id, 'input_tokens': input_token_count, 'n_ctx': effective_n_ctx, 'buffer_target': int(effective_n_ctx * CONTEXT_TRUNCATION_BUFFER_RATIO), 'remaining_ctx': effective_n_ctx - input_token_count})
else:
logger.warning("Could not estimate initial token count. Proceeding, may hit context limit.", extra={'request_id': request_id})
except ValueError as e:
logger.error(f"Invalid input data or parameters: {e}", exc_info=True, extra={'request_id': request_id})
try: error_detail = json.loads(str(e))
except json.JSONDecodeError: error_detail = str(e)
return jsonify(error="Invalid input", detail=error_detail), 400
except Exception as e:
logger.error(f"Unexpected error preparing request: {e}", exc_info=True, extra={'request_id': request_id})
return jsonify(error="Internal server error", detail="An unexpected error occurred preparing the request."), 500
current_messages = list(initial_messages)
continuations = 0
total_completion_tokens_generated = 0
final_finish_reason = "unknown"
final_usage = {}
full_generated_text_nonstream = ""
effective_n_ctx = get_effective_n_ctx()
def streaming_generator(req_id):
nonlocal current_messages, continuations, total_completion_tokens_generated, final_finish_reason, final_usage
while True:
if MAX_CONTINUATIONS >= 0 and continuations > MAX_CONTINUATIONS:
logger.info(f"Max continuations ({MAX_CONTINUATIONS}) reached. Stopping streaming.", extra={'request_id': req_id})
yield f"\n[INFO] Generation stopped: Max continuations reached ({MAX_CONTINUATIONS})."
final_finish_reason = "max_continuations"
break
cycle_number = continuations + 1
logger.info(f"Starting streaming generation cycle {cycle_number}. Message count: {len(current_messages)}.", extra={'request_id': req_id, 'cycle': cycle_number, 'message_count': len(current_messages)})
chosen_params = random.choice(RANDOM_PARAMS_CHOICES)
current_params = {**base_params, **chosen_params}
generated_this_cycle_content = ""
finish_reason = None
usage_this_cycle = {}
try:
streamer = _generate_single_cycle(current_messages, current_params, stream=True, request_id=req_id)
for chunk in streamer:
choice = chunk.get("choices", [{}])[0]
delta = choice.get("delta", {})
token_content = delta.get("content")
chunk_finish_reason = choice.get("finish_reason")
chunk_usage = chunk.get("usage", {})
if token_content:
generated_this_cycle_content += token_content
yield token_content
if chunk_finish_reason:
finish_reason = chunk_finish_reason
usage_this_cycle = chunk_usage
final_usage = usage_this_cycle
break
if not finish_reason and generated_this_cycle_content:
finish_reason = "end_of_stream"
logger.warning(f"Streaming cycle {cycle_number} ended without explicit finish reason.", extra={'request_id': req_id, 'cycle': cycle_number})
except ContextLimitException as e:
logger.warning(f"Context limit caught during streaming cycle {cycle_number}.", extra={'request_id': req_id, 'cycle': cycle_number})
finish_reason = 'length'
yield f"\n[INFO] Context limit approached in cycle {cycle_number}. Attempting continuation...\n"
except GenerationFailedException as e:
logger.error(f"Generation failed in streaming cycle {cycle_number}: {e}", exc_info=True, extra={'request_id': req_id, 'cycle': cycle_number})
yield f"\n[ERROR] Generation failed unexpectedly in cycle {cycle_number}: {e}"
final_finish_reason = "error"
break
except Exception as e:
logger.error(f"An unexpected error occurred in streaming cycle {cycle_number}: {e}", exc_info=True, extra={'request_id': req_id, 'cycle': cycle_number})
yield f"\n[ERROR] An unexpected error occurred in cycle {cycle_number}: {str(e)}"
final_finish_reason = "error"
break
if generated_this_cycle_content:
if not current_messages or current_messages[-1].get('role') != 'assistant':
current_messages.append({"role": "assistant", "content": generated_this_cycle_content})
else:
current_messages[-1]['content'] += generated_this_cycle_content
total_completion_tokens_generated += usage_this_cycle.get("completion_tokens", 0)
if finish_reason == 'stop' or finish_reason == 'end_of_stream':
logger.info(f"Streaming generation stopped naturally in cycle {cycle_number}. Reason: {finish_reason}", extra={'request_id': req_id, 'cycle': cycle_number, 'finish_reason': finish_reason})
final_finish_reason = finish_reason if finish_reason != 'end_of_stream' else 'stop'
yield f"\n[INFO] Generation finished."
break
elif finish_reason == 'length':
continuations += 1
logger.warning(f"N_CTX limit reached in streaming cycle {cycle_number}. Attempting continuation {continuations}.", extra={'request_id': req_id, 'cycle': cycle_number, 'continuations': continuations})
current_messages = truncate_messages_for_context(current_messages, effective_n_ctx, CONTEXT_TRUNCATION_BUFFER_RATIO, request_id=req_id)
if not current_messages or (len(current_messages) == 1 and current_messages[0].get("role") == "system"):
logger.error("Context truncation resulted in empty or system-only messages during streaming. Stopping.", extra={'request_id': req_id, 'cycle': cycle_number})
yield f"\n[ERROR] Generation failed: Context truncation error."
final_finish_reason = "truncation_error"
break
yield f"\n[CONTINUING {continuations} - TRUNCATING CONTEXT...]\n"
time.sleep(0.05)
continue
else:
logger.warning(f"Streaming generation cycle {cycle_number} ended with unexpected reason '{finish_reason}'. Stopping generation.", extra={'request_id': req_id, 'cycle': cycle_number, 'finish_reason': finish_reason})
yield f"\n[INFO] Generation stopped: Reason: {finish_reason or 'Unknown'}"
final_finish_reason = finish_reason or "unknown"
break
logger.info(f"Streaming generation stream closed. Total continuations: {continuations}. Final reason: {final_finish_reason}", extra={'request_id': req_id, 'continuations': continuations, 'final_reason': final_finish_reason})
if is_streaming:
headers = {
"Content-Type": "text/event-stream; charset=utf-8",
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no",
"X-Request-ID": request_id
}
return Response(stream_with_context(streaming_generator(request_id)), headers=headers)
else:
while True:
if MAX_CONTINUATIONS >= 0 and continuations > MAX_CONTINUATIONS:
logger.info(f"Max continuations ({MAX_CONTINUATIONS}) reached. Stopping non-streaming.", extra={'request_id': request_id})
if full_generated_text_nonstream:
full_generated_text_nonstream += "\n\n"
full_generated_text_nonstream += f"[INFO: Generation stopped: Max continuations reached ({MAX_CONTINUATIONS}).]"
final_finish_reason = "max_continuations"
break
cycle_number = continuations + 1
logger.info(f"Starting non-streaming generation cycle {cycle_number}. Message count: {len(current_messages)}.", extra={'request_id': request_id, 'cycle': cycle_number, 'message_count': len(current_messages)})
chosen_params = random.choice(RANDOM_PARAMS_CHOICES)
current_params = {**base_params, **chosen_params}
logger.debug(f"Cycle {cycle_number} params: temp={current_params['temperature']}, top_p={current_params['top_p']}, top_k={current_params['top_k']}, stop={current_params['stop']}", extra={'request_id': request_id, 'cycle': cycle_number, 'params': current_params})
generated_this_cycle_content = ""
finish_reason = None
usage_this_cycle = {}
try:
result = _generate_single_cycle(current_messages, current_params, stream=False, request_id=request_id)
if result and "choices" in result and result["choices"]:
choice = result["choices"][0]
generated_this_cycle_content = choice.get("message", {}).get("content", "")
finish_reason = choice.get("finish_reason", "unknown")
usage_this_cycle = result.get("usage", {})
final_usage = usage_this_cycle
else:
logger.error(f"Invalid response structure from llama_cpp in non-streaming cycle {cycle_number}: {result}", extra={'request_id': request_id, 'cycle': cycle_number, 'result': result})
if full_generated_text_nonstream:
full_generated_text_nonstream += "\n\n"
full_generated_text_nonstream += f"[ERROR: Invalid response structure from model in cycle {cycle_number}.]"
final_finish_reason = "internal_error"
break
logger.info(f"Non-streaming cycle {cycle_number} finished. Reason: {finish_reason}. Usage: {usage_this_cycle}", extra={'request_id': request_id, 'cycle': cycle_number, 'usage': usage_this_cycle, 'finish_reason': finish_reason})
except ContextLimitException:
logger.warning(f"Context limit caught during non-streaming cycle {cycle_number}.", extra={'request_id': request_id, 'cycle': cycle_number})
finish_reason = 'length'
except GenerationFailedException as e:
logger.error(f"Generation failed in non-streaming cycle {cycle_number}: {e}", exc_info=True, extra={'request_id': request_id, 'cycle': cycle_number})
if full_generated_text_nonstream:
full_generated_text_nonstream += "\n\n"
full_generated_text_nonstream += f"[ERROR: Generation failed unexpectedly in cycle {cycle_number}: {e}]"
final_finish_reason = "error"
break
except Exception as e:
logger.error(f"An unexpected error occurred in non-streaming cycle {cycle_number}: {e}", exc_info=True, extra={'request_id': request_id, 'cycle': cycle_number})
if full_generated_text_nonstream:
full_generated_text_nonstream += "\n\n"
full_generated_text_nonstream += f"[ERROR: An unexpected error occurred in cycle {cycle_number}: {str(e)}]"
final_finish_reason = "error"
break
if generated_this_cycle_content:
if continuations > 0 and full_generated_text_nonstream:
full_generated_text_nonstream += f"\n\n[CONTINUATION {continuations} - TRUNCATED CONTEXT]\n\n"
full_generated_text_nonstream += generated_this_cycle_content
if not current_messages or current_messages[-1].get('role') != 'assistant':
current_messages.append({"role": "assistant", "content": generated_this_cycle_content})
else:
current_messages[-1]['content'] += generated_this_cycle_content
tokens_generated_cycle = usage_this_cycle.get("completion_tokens", 0)
total_completion_tokens_generated += tokens_generated_cycle
elif finish_reason == 'length':
logger.warning(f"Non-streaming N_CTX limit hit in cycle {cycle_number} but no completion tokens reported in usage.", extra={'request_id': request_id, 'cycle': cycle_number})
if continuations > 0 and full_generated_text_nonstream:
full_generated_text_nonstream += f"\n\n[CONTINUATION {continuations} - TRUNCATED CONTEXT - NO OUTPUT THIS CYCLE]\n\n"
if finish_reason == 'stop':
logger.info(f"Non-streaming generation stopped naturally (reason: stop) in cycle {cycle_number}.", extra={'request_id': request_id, 'cycle': cycle_number, 'finish_reason': finish_reason})
final_finish_reason = 'stop'
break
elif finish_reason == 'length':
continuations += 1
logger.warning(f"Non-streaming N_CTX limit reached in cycle {cycle_number}. Attempting continuation {continuations}.", extra={'request_id': request_id, 'cycle': cycle_number, 'continuations': continuations})
current_messages = truncate_messages_for_context(current_messages, effective_n_ctx, CONTEXT_TRUNCATION_BUFFER_RATIO, request_id=request_id)
if not current_messages or (len(current_messages) == 1 and current_messages[0].get("role") == "system"):
logger.error("Context truncation resulted in empty or system-only messages during non-streaming. Stopping.", extra={'request_id': request_id, 'cycle': cycle_number})
if full_generated_text_nonstream:
full_generated_text_nonstream += "\n\n"
full_generated_text_nonstream += f"[ERROR: Generation failed: Context truncation error.]"
final_finish_reason = "truncation_error"
break
continue
else:
logger.warning(f"Non-streaming cycle {cycle_number} ended with reason '{finish_reason}' or unexpectedly. Stopping generation.", extra={'request_id': request_id, 'cycle': cycle_number, 'finish_reason': finish_reason})
if full_generated_text_nonstream:
full_generated_text_nonstream += "\n\n"
full_generated_text_nonstream += f"[INFO: Generation stopped unexpectedly. Reason: {finish_reason or 'Unknown'}]"
final_finish_reason = finish_reason or "unknown"
break
logger.info(f"Non-streaming generation finished after {continuations} continuations. Total completion tokens generated: {total_completion_tokens_generated}. Final reason: {final_finish_reason}", extra={'request_id': request_id, 'continuations': continuations, 'total_completion_tokens': total_completion_tokens_generated, 'final_reason': final_finish_reason})
response = Response(full_generated_text_nonstream, mimetype="text/plain; charset=utf-8")
response.headers["X-Request-ID"] = request_id
response.headers["X-Finish-Reason"] = final_finish_reason
response.headers["X-Continuations"] = str(continuations)
response.headers["X-Usage-Completion-Tokens"] = str(total_completion_tokens_generated)
response.headers["X-Usage-Prompt-Tokens-Last-Cycle"] = str(final_usage.get("prompt_tokens", "N/A"))
response.headers["X-Usage-Total-Tokens-Last-Cycle"] = str(final_usage.get("total_tokens", "N/A"))
return response
if __name__ == "__main__":
host = os.getenv("HOST", "0.0.0.0")
port = int(os.getenv("PORT", "7860"))
is_debug = os.getenv("FLASK_DEBUG", "0") == "1"
log_level = logging.DEBUG if is_debug else logging.INFO
logger.setLevel(log_level)
max_cont_desc = MAX_CONTINUATIONS if MAX_CONTINUATIONS >= 0 else 'UNLIMITED'
logger.info(f"Starting Flask server on {host}:{port} (Debug mode: {is_debug})")
logger.info(f"Model: {MODEL_REPO}/{MODEL_FILE}, N_CTX={ACTUAL_N_CTX}, Automatic Continuations: {max_cont_desc} (with context truncation)")
if not llm:
logger.critical("MODEL FAILED TO LOAD. SERVER WILL START BUT '/generate' WILL FAIL.")
logger.info("Running with Flask development server.")
app.run(host=host, port=port, threaded=True, debug=is_debug, use_reloader=False) |