import gradio as gr import pandas as pd import gensim.downloader as api wv = api.load('glove-wiki-gigaword-50') def get_associations(term,top_words=10): return pd.DataFrame(wv.most_similar(positive=[term], topn=10),columns=['word','similarity']) iface = gr.Interface(fn=get_associations, inputs="text", outputs=gr.Dataframe(headers=['word','similarity']),examples=["cat"]).launch(share=False)