|
import gradio as gr |
|
from fastai.vision.all import * |
|
import skimage |
|
|
|
|
|
def get_volumen(): return 0 |
|
|
|
learn1 = load_learner('resnetrs50VolumenHeight.pkl') |
|
learn2 = load_learner('efficientnetv2_rw_s_volumen_height.pkl') |
|
learn3 = load_learner('efficientnetv2_rw_s_Volumen.pkl') |
|
|
|
|
|
|
|
def predict(Imagen_Ortophoto,Imagen_Altura): |
|
imgOrtophoto = PILImage.create(Imagen_Ortophoto) |
|
imgAltura = PILImage.create(Imagen_Altura) |
|
_,pred1,_ = learn1.predict(imgAltura) |
|
_,pred2,_ = learn1.predict(imgAltura) |
|
_,pred3,_ = learn3.predict(imgOrtophoto) |
|
return (pred1[0]+pred2[0]+pred3[0])/3 |
|
|
|
title = "Cálculo de volumen de silos" |
|
description = "Demo para el proyecto SEPARA." |
|
examples = [['ortophoto1.jpg','altura1.jpg'],['ortophoto2.jpg','altura2.jpg']] |
|
interpretation='default' |
|
enable_queue=True |
|
|
|
gr.Interface(fn=predict,inputs=[gr.inputs.Image(shape=(224,224)),gr.inputs.Image(shape=(224,224))],outputs=gr.outputs.Textbox(label="volumen"),title=title,description=description,examples=examples,enable_queue=enable_queue).launch() |
|
|
|
|