import gradio as gr from fastai.vision.all import * import skimage def get_volumen(): return 0 learn1 = load_learner('resnetrs50VolumenHeight.pkl') learn2 = load_learner('efficientnetv2_rw_s_volumen_height.pkl') learn3 = load_learner('efficientnetv2_rw_s_Volumen.pkl') def predict(Imagen_Ortophoto,Imagen_Altura): imgOrtophoto = PILImage.create(Imagen_Ortophoto) imgAltura = PILImage.create(Imagen_Altura) _,pred1,_ = learn1.predict(imgAltura) _,pred2,_ = learn1.predict(imgAltura) _,pred3,_ = learn3.predict(imgOrtophoto) return (pred1[0]+pred2[0]+pred3[0])/3 title = "Cálculo de volumen de silos" description = "Demo para el proyecto SEPARA." examples = [['ortophoto1.jpg','altura1.jpg'],['ortophoto2.jpg','altura2.jpg']] interpretation='default' enable_queue=True gr.Interface(fn=predict,inputs=[gr.inputs.Image(shape=(224,224)),gr.inputs.Image(shape=(224,224))],outputs=gr.outputs.Textbox(label="volumen"),title=title,description=description,examples=examples,enable_queue=enable_queue).launch()