Spaces:
Sleeping
Sleeping
File size: 10,275 Bytes
c8a7e17 3e48648 c8a7e17 3e48648 c8a7e17 3e48648 c8a7e17 3e48648 c8a7e17 3e48648 c8a7e17 3e48648 c8a7e17 3e48648 c8a7e17 3e48648 c8a7e17 3e48648 c8a7e17 3e48648 c8a7e17 3e48648 c8a7e17 3e48648 c8a7e17 3e48648 c8a7e17 3e48648 c8a7e17 3e48648 c8a7e17 3e48648 c8a7e17 3e48648 c8a7e17 3e48648 c8a7e17 3e48648 c8a7e17 3e48648 c8a7e17 3e48648 c8a7e17 3e48648 c8a7e17 3e48648 c8a7e17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
#!/usr/bin/env python3
"""
MCP Video Analysis Client with Llama 3 Integration
This application serves as an MCP (Model Context Protocol) client that:
1. Connects to video analysis tools via MCP
2. Integrates with a Llama 3 model hosted on Modal for intelligent video understanding
3. Provides a Gradio interface for user interaction
"""
import os
import json
import logging
from typing import Dict, Any, Optional
import gradio as gr
import httpx
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class MCPVideoAnalysisClient:
"""MCP Client for video analysis with Llama 3 integration."""
def __init__(self):
# Modal backend for video processing
self.video_analysis_endpoint = os.getenv(
"MODAL_VIDEO_ANALYSIS_ENDPOINT_URL",
"https://jomasego--video-analysis-gradio-pipeline-process-video-analysis.modal.run"
)
# Modal backend for Llama 3 insights
self.llama_endpoint = os.getenv(
"MODAL_LLAMA3_ENDPOINT_URL"
# This will be set to the deployed Llama 3 app URL.
# e.g., "https://jomasego--llama3-inference-service-summarize.modal.run"
)
logger.info(f"Initialized MCP Client.")
logger.info(f"Video Analysis Endpoint: {self.video_analysis_endpoint}")
if not self.llama_endpoint:
logger.warning("MODAL_LLAMA3_ENDPOINT_URL not set. LLM insights will be unavailable.")
else:
logger.info(f"Llama 3 Endpoint: {self.llama_endpoint}")
async def analyze_video_with_modal(self, video_url: str) -> Dict[str, Any]:
"""Call the Modal backend for comprehensive video analysis."""
try:
async with httpx.AsyncClient(timeout=300.0) as client:
logger.info(f"Calling video analysis backend: {video_url}")
response = await client.post(
self.video_analysis_endpoint,
json={"video_url": video_url},
headers={"Content-Type": "application/json"}
)
response.raise_for_status()
return response.json()
except Exception as e:
logger.error(f"Error calling video analysis backend: {e}")
return {"error": f"Video analysis backend error: {str(e)}"}
async def get_insights_from_llama3(self, analysis_data: Dict[str, Any], user_query: Optional[str] = None) -> str:
"""Call the Llama 3 Modal backend for intelligent insights."""
if not self.llama_endpoint:
return "Llama 3 endpoint is not configured. Cannot generate insights."
try:
payload = {
"analysis_data": analysis_data,
"user_query": user_query
}
async with httpx.AsyncClient(timeout=300.0) as client:
logger.info(f"Calling Llama 3 Modal backend for insights.")
response = await client.post(
self.llama_endpoint,
json=payload,
headers={"Content-Type": "application/json"}
)
response.raise_for_status()
result = response.json()
return result.get("summary", "No summary returned from Llama 3 service.")
except Exception as e:
logger.error(f"Error calling Llama 3 backend: {e}")
return f"Error generating Llama 3 insights: {str(e)}"
async def process_video_request(self, video_url: str, user_query: str = None) -> tuple[str, str]:
"""Process a complete video analysis request with Llama 3 enhancement."""
if not video_url or not video_url.strip():
return "Please provide a valid video URL.", ""
try:
# Step 1: Get video analysis from Modal backend
logger.info(f"Starting video analysis for: {video_url}")
video_analysis = await self.analyze_video_with_modal(video_url.strip())
# Step 2: Format the raw analysis for display
raw_analysis = json.dumps(video_analysis, indent=2)
# Step 3: Enhance with Llama 3 insights
logger.info("Generating Llama 3 insights...")
llama_insights = await self.get_insights_from_llama3(video_analysis, user_query)
return llama_insights, raw_analysis
except Exception as e:
error_msg = f"Error processing video request: {str(e)}"
logger.error(error_msg)
return error_msg, ""
# Initialize the MCP client
try:
mcp_client = MCPVideoAnalysisClient()
logger.info("MCP Video Analysis Client initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize MCP client: {e}")
mcp_client = None
# Gradio Interface Functions
async def analyze_video_interface(video_url: str, user_query: str = None) -> tuple[str, str]:
"""Gradio interface function for video analysis."""
if not mcp_client:
return "MCP Client not initialized. Please check your environment variables.", ""
return await mcp_client.process_video_request(video_url, user_query)
def create_gradio_interface():
"""Create and configure the Gradio interface."""
with gr.Blocks(
title="MCP Video Analysis with Llama 3",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1200px !important;
}
.main-header {
text-align: center;
margin-bottom: 30px;
}
.analysis-output {
max-height: 600px;
overflow-y: auto;
}
"""
) as interface:
gr.HTML("""
<div class="main-header">
<h1>π₯ MCP Video Analysis with Llama 3 AI</h1>
<p>Intelligent video content analysis powered by a Modal backend and Llama 3</p>
</div>
""")
with gr.Tab("π Video Analysis"):
with gr.Row():
with gr.Column(scale=1):
video_url_input = gr.Textbox(
label="Video URL",
placeholder="Enter YouTube URL or direct video link...",
lines=2
)
user_query_input = gr.Textbox(
label="Specific Question (Optional)",
placeholder="Ask a specific question about the video...",
lines=2
)
with gr.Row():
analyze_btn = gr.Button("π Analyze Video", variant="primary", size="lg")
clear_btn = gr.Button("ποΈ Clear", variant="secondary")
with gr.Column(scale=2):
llama_output = gr.Textbox(
label="π€ Llama 3 AI Insights",
lines=20,
elem_classes=["analysis-output"],
interactive=False
)
with gr.Row():
raw_analysis_output = gr.JSON(
label="π Raw Analysis Data",
elem_classes=["analysis-output"]
)
# Example videos
gr.HTML("<h3>π Example Videos to Try:</h3>")
with gr.Row():
example_urls = [
"https://www.youtube.com/watch?v=dQw4w9WgXcQ",
"https://www.youtube.com/watch?v=jNQXAC9IVRw",
"https://www.youtube.com/watch?v=9bZkp7q19f0"
]
for i, url in enumerate(example_urls, 1):
gr.Button(f"Example {i}", size="sm").click(
lambda url=url: url, outputs=video_url_input
)
with gr.Tab("βΉοΈ About"):
gr.Markdown("""
## About MCP Video Analysis
This application combines multiple AI technologies to provide comprehensive video analysis:
### π§ Technology Stack
- **Modal Backend**: Scalable cloud compute for video processing and LLM inference
- **Whisper**: Speech-to-text transcription
- **Computer Vision Models**: Object detection, action recognition, and captioning
- **Meta Llama 3**: Advanced AI for intelligent content analysis
- **MCP Protocol**: Model Context Protocol for seamless integration
### π― Features
- **Transcription**: Extract spoken content from videos
- **Visual Analysis**: Identify objects, actions, and scenes
- **Content Understanding**: AI-powered insights and summaries
- **Custom Queries**: Ask specific questions about video content
### π Usage
1. Enter a video URL (YouTube or direct link)
2. Optionally ask a specific question
3. Click "Analyze Video" to get comprehensive insights
4. Review both Llama 3's intelligent analysis and raw data
### π Privacy & Security
- Video processing is handled securely in the cloud
- No video data is stored permanently
- API keys are handled securely via environment variables
""")
# Event handlers
def clear_all():
return "", "", "", ""
analyze_btn.click(
fn=analyze_video_interface,
inputs=[video_url_input, user_query_input],
outputs=[llama_output, raw_analysis_output],
show_progress=True
)
clear_btn.click(
fn=clear_all,
outputs=[video_url_input, user_query_input, llama_output, raw_analysis_output]
)
return interface
# Create and launch the interface
if __name__ == "__main__":
interface = create_gradio_interface()
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
)
|