File size: 10,275 Bytes
c8a7e17
 
3e48648
c8a7e17
 
 
3e48648
c8a7e17
 
 
 
 
 
3e48648
c8a7e17
 
 
 
 
 
 
 
3e48648
c8a7e17
 
3e48648
 
c8a7e17
 
 
 
3e48648
 
 
 
 
 
 
 
 
 
 
 
 
 
c8a7e17
 
 
 
3e48648
c8a7e17
3e48648
c8a7e17
 
 
 
 
 
3e48648
 
c8a7e17
3e48648
 
 
 
c8a7e17
 
3e48648
 
 
 
 
 
 
 
 
 
 
 
 
 
c8a7e17
3e48648
 
c8a7e17
 
3e48648
c8a7e17
 
 
 
 
 
 
 
 
 
 
3e48648
 
 
c8a7e17
3e48648
c8a7e17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e48648
c8a7e17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e48648
 
c8a7e17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e48648
 
c8a7e17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e48648
c8a7e17
 
3e48648
c8a7e17
 
 
 
 
 
 
 
 
 
 
 
3e48648
c8a7e17
 
 
 
 
 
 
 
 
 
 
 
 
 
3e48648
c8a7e17
 
 
 
 
3e48648
c8a7e17
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
#!/usr/bin/env python3
"""
MCP Video Analysis Client with Llama 3 Integration

This application serves as an MCP (Model Context Protocol) client that:
1. Connects to video analysis tools via MCP
2. Integrates with a Llama 3 model hosted on Modal for intelligent video understanding
3. Provides a Gradio interface for user interaction
"""

import os
import json
import logging
from typing import Dict, Any, Optional
import gradio as gr
import httpx

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class MCPVideoAnalysisClient:
    """MCP Client for video analysis with Llama 3 integration."""
    
    def __init__(self):
        # Modal backend for video processing
        self.video_analysis_endpoint = os.getenv(
            "MODAL_VIDEO_ANALYSIS_ENDPOINT_URL", 
            "https://jomasego--video-analysis-gradio-pipeline-process-video-analysis.modal.run"
        )
        
        # Modal backend for Llama 3 insights
        self.llama_endpoint = os.getenv(
            "MODAL_LLAMA3_ENDPOINT_URL"
            # This will be set to the deployed Llama 3 app URL.
            # e.g., "https://jomasego--llama3-inference-service-summarize.modal.run"
        )
        
        logger.info(f"Initialized MCP Client.")
        logger.info(f"Video Analysis Endpoint: {self.video_analysis_endpoint}")
        if not self.llama_endpoint:
            logger.warning("MODAL_LLAMA3_ENDPOINT_URL not set. LLM insights will be unavailable.")
        else:
            logger.info(f"Llama 3 Endpoint: {self.llama_endpoint}")

    async def analyze_video_with_modal(self, video_url: str) -> Dict[str, Any]:
        """Call the Modal backend for comprehensive video analysis."""
        try:
            async with httpx.AsyncClient(timeout=300.0) as client:
                logger.info(f"Calling video analysis backend: {video_url}")
                response = await client.post(
                    self.video_analysis_endpoint,
                    json={"video_url": video_url},
                    headers={"Content-Type": "application/json"}
                )
                response.raise_for_status()
                return response.json()
        except Exception as e:
            logger.error(f"Error calling video analysis backend: {e}")
            return {"error": f"Video analysis backend error: {str(e)}"}
    
    async def get_insights_from_llama3(self, analysis_data: Dict[str, Any], user_query: Optional[str] = None) -> str:
        """Call the Llama 3 Modal backend for intelligent insights."""
        if not self.llama_endpoint:
            return "Llama 3 endpoint is not configured. Cannot generate insights."

        try:
            payload = {
                "analysis_data": analysis_data,
                "user_query": user_query
            }
            async with httpx.AsyncClient(timeout=300.0) as client:
                logger.info(f"Calling Llama 3 Modal backend for insights.")
                response = await client.post(
                    self.llama_endpoint,
                    json=payload,
                    headers={"Content-Type": "application/json"}
                )
                response.raise_for_status()
                result = response.json()
                return result.get("summary", "No summary returned from Llama 3 service.")
        except Exception as e:
            logger.error(f"Error calling Llama 3 backend: {e}")
            return f"Error generating Llama 3 insights: {str(e)}"
    
    async def process_video_request(self, video_url: str, user_query: str = None) -> tuple[str, str]:
        """Process a complete video analysis request with Llama 3 enhancement."""
        if not video_url or not video_url.strip():
            return "Please provide a valid video URL.", ""
        
        try:
            # Step 1: Get video analysis from Modal backend
            logger.info(f"Starting video analysis for: {video_url}")
            video_analysis = await self.analyze_video_with_modal(video_url.strip())
            
            # Step 2: Format the raw analysis for display
            raw_analysis = json.dumps(video_analysis, indent=2)
            
            # Step 3: Enhance with Llama 3 insights
            logger.info("Generating Llama 3 insights...")
            llama_insights = await self.get_insights_from_llama3(video_analysis, user_query)
            
            return llama_insights, raw_analysis
            
        except Exception as e:
            error_msg = f"Error processing video request: {str(e)}"
            logger.error(error_msg)
            return error_msg, ""

# Initialize the MCP client
try:
    mcp_client = MCPVideoAnalysisClient()
    logger.info("MCP Video Analysis Client initialized successfully")
except Exception as e:
    logger.error(f"Failed to initialize MCP client: {e}")
    mcp_client = None

# Gradio Interface Functions
async def analyze_video_interface(video_url: str, user_query: str = None) -> tuple[str, str]:
    """Gradio interface function for video analysis."""
    if not mcp_client:
        return "MCP Client not initialized. Please check your environment variables.", ""
    
    return await mcp_client.process_video_request(video_url, user_query)

def create_gradio_interface():
    """Create and configure the Gradio interface."""
    
    with gr.Blocks(
        title="MCP Video Analysis with Llama 3",
        theme=gr.themes.Soft(),
        css="""
        .gradio-container {
            max-width: 1200px !important;
        }
        .main-header {
            text-align: center;
            margin-bottom: 30px;
        }
        .analysis-output {
            max-height: 600px;
            overflow-y: auto;
        }
        """
    ) as interface:
        
        gr.HTML("""
        <div class="main-header">
            <h1>πŸŽ₯ MCP Video Analysis with Llama 3 AI</h1>
            <p>Intelligent video content analysis powered by a Modal backend and Llama 3</p>
        </div>
        """)
        
        with gr.Tab("πŸ” Video Analysis"):
            with gr.Row():
                with gr.Column(scale=1):
                    video_url_input = gr.Textbox(
                        label="Video URL",
                        placeholder="Enter YouTube URL or direct video link...",
                        lines=2
                    )
                    user_query_input = gr.Textbox(
                        label="Specific Question (Optional)",
                        placeholder="Ask a specific question about the video...",
                        lines=2
                    )
                    
                    with gr.Row():
                        analyze_btn = gr.Button("πŸš€ Analyze Video", variant="primary", size="lg")
                        clear_btn = gr.Button("πŸ—‘οΈ Clear", variant="secondary")
                
                with gr.Column(scale=2):
                    llama_output = gr.Textbox(
                        label="πŸ€– Llama 3 AI Insights",
                        lines=20,
                        elem_classes=["analysis-output"],
                        interactive=False
                    )
            
            with gr.Row():
                raw_analysis_output = gr.JSON(
                    label="πŸ“Š Raw Analysis Data",
                    elem_classes=["analysis-output"]
                )
            
            # Example videos
            gr.HTML("<h3>πŸ“ Example Videos to Try:</h3>")
            with gr.Row():
                example_urls = [
                    "https://www.youtube.com/watch?v=dQw4w9WgXcQ",
                    "https://www.youtube.com/watch?v=jNQXAC9IVRw",
                    "https://www.youtube.com/watch?v=9bZkp7q19f0"
                ]
                for i, url in enumerate(example_urls, 1):
                    gr.Button(f"Example {i}", size="sm").click(
                        lambda url=url: url, outputs=video_url_input
                    )
        
        with gr.Tab("ℹ️ About"):
            gr.Markdown("""
            ## About MCP Video Analysis
            
            This application combines multiple AI technologies to provide comprehensive video analysis:
            
            ### πŸ”§ Technology Stack
            - **Modal Backend**: Scalable cloud compute for video processing and LLM inference
            - **Whisper**: Speech-to-text transcription
            - **Computer Vision Models**: Object detection, action recognition, and captioning
            - **Meta Llama 3**: Advanced AI for intelligent content analysis
            - **MCP Protocol**: Model Context Protocol for seamless integration
            
            ### 🎯 Features
            - **Transcription**: Extract spoken content from videos
            - **Visual Analysis**: Identify objects, actions, and scenes
            - **Content Understanding**: AI-powered insights and summaries
            - **Custom Queries**: Ask specific questions about video content
            
            ### πŸš€ Usage
            1. Enter a video URL (YouTube or direct link)
            2. Optionally ask a specific question
            3. Click "Analyze Video" to get comprehensive insights
            4. Review both Llama 3's intelligent analysis and raw data
            
            ### πŸ”’ Privacy & Security
            - Video processing is handled securely in the cloud
            - No video data is stored permanently
            - API keys are handled securely via environment variables
            """)
        
        # Event handlers
        def clear_all():
            return "", "", "", ""
        
        analyze_btn.click(
            fn=analyze_video_interface,
            inputs=[video_url_input, user_query_input],
            outputs=[llama_output, raw_analysis_output],
            show_progress=True
        )
        
        clear_btn.click(
            fn=clear_all,
            outputs=[video_url_input, user_query_input, llama_output, raw_analysis_output]
        )
    
    return interface

# Create and launch the interface
if __name__ == "__main__":
    interface = create_gradio_interface()
    interface.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        show_error=True
    )