# This script creates a simple web application using Gradio to generate captions for images using the BLIP model from Hugging Face's Transformers library. # Import necessary libraries import gradio as gr import numpy as np from PIL import Image from transformers import AutoProcessor, BlipForConditionalGeneration # Load the pretrained processor and model processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") # Define the function to process the image and generate a caption def caption_image(input_image: np.ndarray): # Convert numpy array to PIL Image and convert to RGB raw_image = Image.fromarray(input_image).convert('RGB') # Process the image text = "An image of" inputs = processor(images=raw_image, text=text, return_tensors="pt") # Generate a caption for the image outputs = model.generate(**inputs, max_length=100) # Decode the generated tokens to text and store it into `caption` caption = processor.decode(outputs[0], skip_special_tokens=True) return caption # Create a Gradio interface iface = gr.Interface( fn=caption_image, inputs=gr.Image(), outputs="text", title="Image Captioning", description="This is a simple web app for generating captions for images using BLIP model from Salesforce." ) # Launch the Gradio app iface.launch()