from transformers import AutoTokenizer, AutoModelForCausalLM import logging tokenizer = AutoTokenizer.from_pretrained("bitext/Mistral-7B-Customer-Support") model = AutoModelForCausalLM.from_pretrained("bitext/Mistral-7B-Customer-Support").to('cuda') def query_huggingface(prompt): try: messages = [ {"role": "user", "content": prompt}, ] inputs = tokenizer.apply_chat_template( messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt", ).to('cuda') outputs = model.generate(**inputs, max_new_tokens=100) response = tokenizer.decode(outputs[0][inputs["input_ids"].shape[-1]:], skip_special_tokens=True) return response.strip() except Exception as e: logging.error(f"Local Mistral-7B-Customer-Support inference failed: {e}") return "Sorry, I'm having trouble responding right now."