File size: 9,470 Bytes
5e9936b
 
8bd0428
5e9936b
8bd0428
 
 
 
 
 
dc60fdb
8bd0428
 
 
5e9936b
 
 
8bd0428
5e9936b
8bd0428
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e9936b
 
8bd0428
 
 
 
 
 
 
5e9936b
8bd0428
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e9936b
8bd0428
 
 
 
 
 
5e9936b
8bd0428
 
 
5e9936b
 
 
8bd0428
 
 
 
 
 
 
 
 
 
 
5e9936b
8bd0428
 
 
 
 
5e9936b
8bd0428
 
5e9936b
8bd0428
 
 
 
 
 
 
 
5e9936b
 
8bd0428
5e9936b
8bd0428
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e9936b
 
 
8bd0428
 
 
5e9936b
8bd0428
835e1fb
8bd0428
 
5e9936b
8bd0428
 
5e9936b
8bd0428
 
 
 
 
5e9936b
8bd0428
5e9936b
8bd0428
689d1b4
 
 
 
 
 
 
5e9936b
8bd0428
5e9936b
8bd0428
 
5e9936b
8bd0428
 
 
 
 
 
 
 
 
 
5e9936b
8bd0428
 
 
5e9936b
8bd0428
5e9936b
 
8bd0428
 
 
 
 
 
 
5e9936b
 
 
8bd0428
 
 
5e9936b
 
8bd0428
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import gradio as gr
import numpy as np
import spaces
import torch
import random
import json
import os
from PIL import Image
from diffusers import FluxKontextPipeline
from diffusers.utils import load_image
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, login
from safetensors.torch import load_file
import requests
import re

device = "cuda" if torch.cuda.is_available() else "cpu"

MAX_SEED = np.iinfo(np.int32).max

pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to(device)

with open("flux_loras.json", "r") as file:
    data = json.load(file)
    flux_loras_raw = [
        {
            "image": item["image"],
            "title": item["title"],
            "repo": item["repo"],
            "weights": item.get("weights", "pytorch_lora_weights.safetensors"),
            "prompt": item.get("prompt"),
            "lora_type": item.get("lora_type", "flux"),
            "lora_scale_config": item.get("lora_scale", 1.5),
        }
        for item in data
    ]
print(f"Loaded {len(flux_loras_raw)} LoRAs from JSON")
lora_cache = {}


def load_lora_weights(repo_id, weights_filename):
    """Load LoRA weights from HuggingFace"""
    try:
        if repo_id not in lora_cache:
            lora_path = hf_hub_download(repo_id=repo_id, filename=weights_filename)
            lora_cache[repo_id] = lora_path
        return lora_cache[repo_id]
    except Exception as e:
        print(f"Error loading LoRA from {repo_id}: {e}")
        return None


def update_selection(selected_state: gr.SelectData, flux_loras):
    """Update UI when a LoRA is selected"""
    if selected_state.index >= len(flux_loras):
        return "### No LoRA selected", gr.update(), None, gr.update()

    lora_repo = flux_loras[selected_state.index]["repo"]
    prompt = flux_loras[selected_state.index]["prompt"]

    updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo})"
    if prompt:
        new_placeholder = prompt
    else:
        new_placeholder = f"opt - describe the person/subject, e.g. 'a man with glasses and a beard'"

    print("Selected Index: ", flux_loras[selected_state.index])
    optimal_scale = flux_loras[selected_state.index].get("lora_scale_config", 1.5)
    print("Optimal Scale: ", optimal_scale)
    return updated_text, gr.update(placeholder=new_placeholder), selected_state.index, optimal_scale


def get_huggingface_lora(link):
    """Download LoRA from HuggingFace link"""
    split_link = link.split("/")
    if len(split_link) == 2:
        try:
            model_card = ModelCard.load(link)
            trigger_word = model_card.data.get("instance_prompt", "")

            fs = HfFileSystem()
            list_of_files = fs.ls(link, detail=False)
            safetensors_file = None

            for file in list_of_files:
                if file.endswith(".safetensors") and "lora" in file.lower():
                    safetensors_file = file.split("/")[-1]
                    break

            if not safetensors_file:
                safetensors_file = "pytorch_lora_weights.safetensors"

            return split_link[1], safetensors_file, trigger_word
        except Exception as e:
            raise Exception(f"Error loading LoRA: {e}")
    else:
        raise Exception("Invalid HuggingFace repository format")


def classify_gallery(flux_loras):
    """Sort gallery by likes"""
    sorted_gallery = sorted(flux_loras, key=lambda x: x.get("likes", 0), reverse=True)
    return [(item["image"], item["title"]) for item in sorted_gallery], sorted_gallery


def infer_with_lora_wrapper(
    input_image,
    prompt,
    selected_index,
    seed=42,
    randomize_seed=False,
    guidance_scale=2.5,
    lora_scale=1.75,
    flux_loras=None,
):
    """Wrapper function to handle state serialization"""
    return infer_with_lora(input_image, prompt, selected_index, seed, randomize_seed, guidance_scale, lora_scale, flux_loras)


@spaces.GPU
def infer_with_lora(
    input_image,
    prompt,
    selected_index,
    seed=42,
    randomize_seed=False,
    guidance_scale=2.5,
    lora_scale=1.0,
    flux_loras=None,
):
    """Generate image with selected LoRA"""
    global pipe

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    # Determine which LoRA to use
    lora_to_use = None
    if selected_index is not None and flux_loras and selected_index < len(flux_loras):
        lora_to_use = flux_loras[selected_index]
    print(f"Loaded {len(flux_loras)} LoRAs from JSON")
    # Load LoRA if needed
    print(f"LoRA to use: {lora_to_use}")
    if lora_to_use:
        try:
            if "selected_lora" in pipe.get_active_adapters():
                pipe.unload_lora_weights()

            lora_path = load_lora_weights(lora_to_use["repo"], lora_to_use["weights"])
            if lora_path:
                pipe.load_lora_weights(lora_path, adapter_name="selected_lora")
                pipe.set_adapters(["selected_lora"], adapter_weights=[lora_scale])
                print(f"loaded: {lora_path} with scale {lora_scale}")

        except Exception as e:
            print(f"Error loading LoRA: {e}")

    input_image = input_image.convert("RGB")
    prompt = lora_to_use["prompt"]
    try:
        image = pipe(image=input_image, width=input_image.size[0], height=input_image.size[1], prompt=prompt, guidance_scale=guidance_scale, generator=torch.Generator().manual_seed(seed)).images[0]
        return image, seed, gr.update(visible=True), lora_scale
    except Exception as e:
        print(f"Error during inference: {e}")
        return None, seed, gr.update(visible=False), lora_scale


# CSS styling
css = """
#main_app {
    display: flex;
    gap: 20px;
}
#box_column {
    min-width: 400px;
}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}  
#selected_lora {
    color: #2563eb;
    font-weight: bold;
}
#prompt {
    flex-grow: 1;
}
#run_button {
    background: linear-gradient(45deg, #2563eb, #3b82f6);
    color: white;
    border: none;
    padding: 8px 16px;
    border-radius: 6px;
    font-weight: bold;
}
.custom_lora_card {
    background: #f8fafc;
    border: 1px solid #e2e8f0;
    border-radius: 8px;
    padding: 12px;
    margin: 8px 0;
}
#gallery{
    overflow: scroll !important
}
"""

# Create Gradio interface
with gr.Blocks(css=css, theme=gr.themes.Ocean(font=[gr.themes.GoogleFont("Lexend Deca"), "sans-serif"])) as demo:
    gr_flux_loras = gr.State(value=flux_loras_raw)

    title = gr.HTML(
        """<h1><img src="https://huggingface.co/jroessler/flux-kontext-segmentation-sweatshirt/resolve/main/t-shirt-emoji.png" alt="LoRA"> FLUX.1 Kontext for Segmentation</h1>""",
        elem_id="title",
    )

    selected_state = gr.State(value=None)
    lora_state = gr.State(value=1.0)

    with gr.Row(elem_id="main_app"):
        with gr.Column(scale=4, elem_id="box_column"):
            with gr.Group(elem_id="gallery_box"):
                input_image = gr.Image(label="Upload an image", type="pil", height=300)
                gallery = gr.Gallery(label="Pick a LoRA", allow_preview=False, columns=3, elem_id="gallery", show_share_button=False, height=400)

        with gr.Column(scale=5):
            with gr.Row():
                prompt = gr.Textbox(
                    label="Editing Prompt",
                    show_label=False,
                    lines=1,
                    max_lines=1,
                    placeholder="",
                    elem_id="prompt",
                    interactive=False,
                )
                run_button = gr.Button("Generate", elem_id="run_button")

            result = gr.Image(label="Generated Image", interactive=False)
            reuse_button = gr.Button("Reuse this image", visible=False)

            with gr.Accordion("Advanced Settings", open=False):
                lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=2, step=0.1, value=1.5, info="Controls the strength of the LoRA effect")
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=1,
                    maximum=10,
                    step=0.1,
                    value=2.5,
                )

            prompt_title = gr.Markdown(
                value="### Click on a LoRA in the gallery to select it",
                visible=True,
                elem_id="selected_lora",
            )

    gallery.select(fn=update_selection, inputs=[gr_flux_loras], outputs=[prompt_title, prompt, selected_state, lora_scale], show_progress=False)

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer_with_lora_wrapper,
        inputs=[input_image, prompt, selected_state, seed, randomize_seed, guidance_scale, lora_scale, gr_flux_loras],
        outputs=[result, seed, reuse_button, lora_state],
    )

    reuse_button.click(fn=lambda image: image, inputs=[result], outputs=[input_image])

    # Initialize gallery
    demo.load(fn=classify_gallery, inputs=[gr_flux_loras], outputs=[gallery, gr_flux_loras])

demo.queue(default_concurrency_limit=None)
demo.launch()