Spaces:
Runtime error
Runtime error
File size: 9,470 Bytes
5e9936b 8bd0428 5e9936b 8bd0428 dc60fdb 8bd0428 5e9936b 8bd0428 5e9936b 8bd0428 5e9936b 8bd0428 5e9936b 8bd0428 5e9936b 8bd0428 5e9936b 8bd0428 5e9936b 8bd0428 5e9936b 8bd0428 5e9936b 8bd0428 5e9936b 8bd0428 5e9936b 8bd0428 5e9936b 8bd0428 5e9936b 8bd0428 5e9936b 8bd0428 835e1fb 8bd0428 5e9936b 8bd0428 5e9936b 8bd0428 5e9936b 8bd0428 5e9936b 8bd0428 689d1b4 5e9936b 8bd0428 5e9936b 8bd0428 5e9936b 8bd0428 5e9936b 8bd0428 5e9936b 8bd0428 5e9936b 8bd0428 5e9936b 8bd0428 5e9936b 8bd0428 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import gradio as gr
import numpy as np
import spaces
import torch
import random
import json
import os
from PIL import Image
from diffusers import FluxKontextPipeline
from diffusers.utils import load_image
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, login
from safetensors.torch import load_file
import requests
import re
device = "cuda" if torch.cuda.is_available() else "cpu"
MAX_SEED = np.iinfo(np.int32).max
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to(device)
with open("flux_loras.json", "r") as file:
data = json.load(file)
flux_loras_raw = [
{
"image": item["image"],
"title": item["title"],
"repo": item["repo"],
"weights": item.get("weights", "pytorch_lora_weights.safetensors"),
"prompt": item.get("prompt"),
"lora_type": item.get("lora_type", "flux"),
"lora_scale_config": item.get("lora_scale", 1.5),
}
for item in data
]
print(f"Loaded {len(flux_loras_raw)} LoRAs from JSON")
lora_cache = {}
def load_lora_weights(repo_id, weights_filename):
"""Load LoRA weights from HuggingFace"""
try:
if repo_id not in lora_cache:
lora_path = hf_hub_download(repo_id=repo_id, filename=weights_filename)
lora_cache[repo_id] = lora_path
return lora_cache[repo_id]
except Exception as e:
print(f"Error loading LoRA from {repo_id}: {e}")
return None
def update_selection(selected_state: gr.SelectData, flux_loras):
"""Update UI when a LoRA is selected"""
if selected_state.index >= len(flux_loras):
return "### No LoRA selected", gr.update(), None, gr.update()
lora_repo = flux_loras[selected_state.index]["repo"]
prompt = flux_loras[selected_state.index]["prompt"]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo})"
if prompt:
new_placeholder = prompt
else:
new_placeholder = f"opt - describe the person/subject, e.g. 'a man with glasses and a beard'"
print("Selected Index: ", flux_loras[selected_state.index])
optimal_scale = flux_loras[selected_state.index].get("lora_scale_config", 1.5)
print("Optimal Scale: ", optimal_scale)
return updated_text, gr.update(placeholder=new_placeholder), selected_state.index, optimal_scale
def get_huggingface_lora(link):
"""Download LoRA from HuggingFace link"""
split_link = link.split("/")
if len(split_link) == 2:
try:
model_card = ModelCard.load(link)
trigger_word = model_card.data.get("instance_prompt", "")
fs = HfFileSystem()
list_of_files = fs.ls(link, detail=False)
safetensors_file = None
for file in list_of_files:
if file.endswith(".safetensors") and "lora" in file.lower():
safetensors_file = file.split("/")[-1]
break
if not safetensors_file:
safetensors_file = "pytorch_lora_weights.safetensors"
return split_link[1], safetensors_file, trigger_word
except Exception as e:
raise Exception(f"Error loading LoRA: {e}")
else:
raise Exception("Invalid HuggingFace repository format")
def classify_gallery(flux_loras):
"""Sort gallery by likes"""
sorted_gallery = sorted(flux_loras, key=lambda x: x.get("likes", 0), reverse=True)
return [(item["image"], item["title"]) for item in sorted_gallery], sorted_gallery
def infer_with_lora_wrapper(
input_image,
prompt,
selected_index,
seed=42,
randomize_seed=False,
guidance_scale=2.5,
lora_scale=1.75,
flux_loras=None,
):
"""Wrapper function to handle state serialization"""
return infer_with_lora(input_image, prompt, selected_index, seed, randomize_seed, guidance_scale, lora_scale, flux_loras)
@spaces.GPU
def infer_with_lora(
input_image,
prompt,
selected_index,
seed=42,
randomize_seed=False,
guidance_scale=2.5,
lora_scale=1.0,
flux_loras=None,
):
"""Generate image with selected LoRA"""
global pipe
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Determine which LoRA to use
lora_to_use = None
if selected_index is not None and flux_loras and selected_index < len(flux_loras):
lora_to_use = flux_loras[selected_index]
print(f"Loaded {len(flux_loras)} LoRAs from JSON")
# Load LoRA if needed
print(f"LoRA to use: {lora_to_use}")
if lora_to_use:
try:
if "selected_lora" in pipe.get_active_adapters():
pipe.unload_lora_weights()
lora_path = load_lora_weights(lora_to_use["repo"], lora_to_use["weights"])
if lora_path:
pipe.load_lora_weights(lora_path, adapter_name="selected_lora")
pipe.set_adapters(["selected_lora"], adapter_weights=[lora_scale])
print(f"loaded: {lora_path} with scale {lora_scale}")
except Exception as e:
print(f"Error loading LoRA: {e}")
input_image = input_image.convert("RGB")
prompt = lora_to_use["prompt"]
try:
image = pipe(image=input_image, width=input_image.size[0], height=input_image.size[1], prompt=prompt, guidance_scale=guidance_scale, generator=torch.Generator().manual_seed(seed)).images[0]
return image, seed, gr.update(visible=True), lora_scale
except Exception as e:
print(f"Error during inference: {e}")
return None, seed, gr.update(visible=False), lora_scale
# CSS styling
css = """
#main_app {
display: flex;
gap: 20px;
}
#box_column {
min-width: 400px;
}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
#selected_lora {
color: #2563eb;
font-weight: bold;
}
#prompt {
flex-grow: 1;
}
#run_button {
background: linear-gradient(45deg, #2563eb, #3b82f6);
color: white;
border: none;
padding: 8px 16px;
border-radius: 6px;
font-weight: bold;
}
.custom_lora_card {
background: #f8fafc;
border: 1px solid #e2e8f0;
border-radius: 8px;
padding: 12px;
margin: 8px 0;
}
#gallery{
overflow: scroll !important
}
"""
# Create Gradio interface
with gr.Blocks(css=css, theme=gr.themes.Ocean(font=[gr.themes.GoogleFont("Lexend Deca"), "sans-serif"])) as demo:
gr_flux_loras = gr.State(value=flux_loras_raw)
title = gr.HTML(
"""<h1><img src="https://huggingface.co/jroessler/flux-kontext-segmentation-sweatshirt/resolve/main/t-shirt-emoji.png" alt="LoRA"> FLUX.1 Kontext for Segmentation</h1>""",
elem_id="title",
)
selected_state = gr.State(value=None)
lora_state = gr.State(value=1.0)
with gr.Row(elem_id="main_app"):
with gr.Column(scale=4, elem_id="box_column"):
with gr.Group(elem_id="gallery_box"):
input_image = gr.Image(label="Upload an image", type="pil", height=300)
gallery = gr.Gallery(label="Pick a LoRA", allow_preview=False, columns=3, elem_id="gallery", show_share_button=False, height=400)
with gr.Column(scale=5):
with gr.Row():
prompt = gr.Textbox(
label="Editing Prompt",
show_label=False,
lines=1,
max_lines=1,
placeholder="",
elem_id="prompt",
interactive=False,
)
run_button = gr.Button("Generate", elem_id="run_button")
result = gr.Image(label="Generated Image", interactive=False)
reuse_button = gr.Button("Reuse this image", visible=False)
with gr.Accordion("Advanced Settings", open=False):
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=2, step=0.1, value=1.5, info="Controls the strength of the LoRA effect")
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=10,
step=0.1,
value=2.5,
)
prompt_title = gr.Markdown(
value="### Click on a LoRA in the gallery to select it",
visible=True,
elem_id="selected_lora",
)
gallery.select(fn=update_selection, inputs=[gr_flux_loras], outputs=[prompt_title, prompt, selected_state, lora_scale], show_progress=False)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer_with_lora_wrapper,
inputs=[input_image, prompt, selected_state, seed, randomize_seed, guidance_scale, lora_scale, gr_flux_loras],
outputs=[result, seed, reuse_button, lora_state],
)
reuse_button.click(fn=lambda image: image, inputs=[result], outputs=[input_image])
# Initialize gallery
demo.load(fn=classify_gallery, inputs=[gr_flux_loras], outputs=[gallery, gr_flux_loras])
demo.queue(default_concurrency_limit=None)
demo.launch()
|