File size: 12,519 Bytes
120c870
5ff8440
120c870
5ff8440
 
120c870
 
94e9a55
5ff8440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120c870
5ff8440
120c870
5ff8440
 
120c870
5ff8440
 
 
 
120c870
5ff8440
 
 
120c870
5ff8440
 
 
120c870
5ff8440
 
 
 
120c870
5ff8440
120c870
5ff8440
 
 
120c870
 
5ff8440
 
 
 
120c870
5ff8440
 
120c870
5ff8440
 
 
 
120c870
5ff8440
120c870
 
5ff8440
 
 
 
120c870
5ff8440
 
 
 
120c870
 
5ff8440
 
 
 
 
 
 
 
 
94e9a55
120c870
 
5ff8440
 
 
120c870
5ff8440
 
120c870
5ff8440
 
 
120c870
5ff8440
 
 
 
 
 
120c870
5ff8440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120c870
5ff8440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120c870
5ff8440
120c870
 
5ff8440
 
 
120c870
5ff8440
 
120c870
5ff8440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94e9a55
120c870
5ff8440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120c870
 
5ff8440
 
 
120c870
 
5ff8440
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
"""
SuperKart Sales Prediction Flask API

This Flask application provides a REST API for predicting product sales using a pre-trained
Random Forest model. The API accepts product and store features and returns predicted sales revenue.
"""

import os
import joblib
import pandas as pd
from flask import Flask, request, jsonify
from flask_cors import CORS
import logging
from typing import Any, Dict
from pydantic import BaseModel, ValidationError, field_validator
from datetime import datetime

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Initialize Flask app
app = Flask(__name__)
CORS(app)  # Enable CORS for frontend integration

# Global variables for model and preprocessing pipeline
model = None
feature_columns = None

# Define user input features (what user provides)
USER_INPUT_FEATURES = [
    "Product_Weight",
    "Product_Sugar_Content",
    "Product_Allocated_Area",
    "Product_Type",
    "Product_MRP",
    "Store_Establishment_Year",
    "Store_Size",
    "Store_Location_City_Type",
    "Store_Type",
]

# Define model features (what model expects after preprocessing)
MODEL_FEATURES = [
    "Product_Weight",
    "Product_Sugar_Content",
    "Product_Allocated_Area",
    "Product_Type",
    "Product_MRP",
    "Store_Size",
    "Store_Location_City_Type",
    "Store_Type",
    "Store_Age",
]


# Pydantic model for input validation
class PredictionInput(BaseModel):
    Product_Weight: float
    Product_Sugar_Content: str
    Product_Allocated_Area: float
    Product_Type: str
    Product_MRP: float
    Store_Establishment_Year: int
    Store_Size: str
    Store_Location_City_Type: str
    Store_Type: str

    @field_validator("Product_Weight")
    @classmethod
    def validate_product_weight(cls, v: float) -> float:
        if v <= 0:
            raise ValueError("Product_Weight must be greater than 0")
        if v < 4.0 or v > 22.0:
            raise ValueError("Product_Weight must be between 4.0 and 22.0")
        return v

    @field_validator("Product_Allocated_Area")
    @classmethod
    def validate_allocated_area(cls, v: float) -> float:
        if v < 0 or v > 1:
            raise ValueError("Product_Allocated_Area must be between 0 and 1")
        return v

    @field_validator("Product_MRP")
    @classmethod
    def validate_mrp(cls, v: float) -> float:
        if v <= 0:
            raise ValueError("Product_MRP must be greater than 0")
        if v < 31.0 or v > 266.0:
            raise ValueError("Product_MRP must be between 31.0 and 266.0")
        return v

    @field_validator("Store_Establishment_Year")
    @classmethod
    def validate_establishment_year(cls, v: int) -> int:
        valid_years = [1987, 1998, 1999, 2009]
        if v not in valid_years:
            raise ValueError(f"Store_Establishment_Year must be one of: {valid_years}")
        return v

    @field_validator("Product_Sugar_Content")
    @classmethod
    def validate_sugar_content(cls, v: str) -> str:
        valid = ["Low Sugar", "Regular", "No Sugar"]
        if v not in valid:
            raise ValueError(f"Product_Sugar_Content must be one of: {valid}")
        return v

    @field_validator("Product_Type")
    @classmethod
    def validate_product_type(cls, v: str) -> str:
        valid = [
            "Dairy",
            "Soft Drinks",
            "Meat",
            "Fruits and Vegetables",
            "Household",
            "Baking Goods",
            "Snack Foods",
            "Frozen Foods",
            "Breakfast",
            "Health and Hygiene",
            "Hard Drinks",
            "Canned",
            "Bread",
            "Starchy Foods",
            "Others",
            "Seafood",
        ]
        if v not in valid:
            raise ValueError(f"Product_Type must be one of: {valid}")
        return v

    @field_validator("Store_Size")
    @classmethod
    def validate_store_size(cls, v: str) -> str:
        valid = ["Small", "Medium", "High"]
        if v not in valid:
            raise ValueError(f"Store_Size must be one of: {valid}")
        return v

    @field_validator("Store_Location_City_Type")
    @classmethod
    def validate_city_type(cls, v: str) -> str:
        valid = ["Tier 1", "Tier 2", "Tier 3"]
        if v not in valid:
            raise ValueError(f"Store_Location_City_Type must be one of: {valid}")
        return v

    @field_validator("Store_Type")
    @classmethod
    def validate_store_type(cls, v: str) -> str:
        valid = [
            "Supermarket Type1",
            "Supermarket Type2",
            "Supermarket Type3",
            "Departmental Store",
            "Food Mart",
        ]
        if v not in valid:
            raise ValueError(f"Store_Type must be one of: {valid}")
        return v


def load_model(model_path: str):
    """
    Load the trained model from the specified path.

    Args:
        model_path (str): Path to the model file.

    Returns:
        bool: True if model loaded successfully, False otherwise.
    """
    global model, feature_columns

    try:
        if not os.path.exists(model_path):
            raise FileNotFoundError(f"Model file not found at: {model_path}")

        # Load the trained model (which includes preprocessing pipeline)
        model = joblib.load(model_path)
        logger.info(f"βœ… Model loaded successfully from: {model_path}")

        # Set feature columns
        feature_columns = MODEL_FEATURES
        logger.info(f"πŸ“‹ Model features: {MODEL_FEATURES}")
        logger.info(f"πŸ“‹ User input features: {USER_INPUT_FEATURES}")

        return True

    except Exception as e:
        logger.error(f"❌ Error loading model: {str(e)}")
        return False


def convert_establishment_year_to_age(data: Dict[str, Any]) -> Dict[str, Any]:
    """Convert Store_Establishment_Year to Store_Age."""
    # Create a copy to avoid modifying the original
    converted_data = data.copy()

    # Get current year
    current_year = datetime.now().year

    # Convert establishment year to age
    if "Store_Establishment_Year" in converted_data:
        establishment_year = converted_data.pop("Store_Establishment_Year")
        converted_data["Store_Age"] = current_year - establishment_year

    return converted_data


def preprocess_input(data: Dict[str, Any]) -> pd.DataFrame:
    """Convert input data to DataFrame format expected by the model."""
    # First convert establishment year to age
    converted_data = convert_establishment_year_to_age(data)

    # Create DataFrame with model features
    df = pd.DataFrame([converted_data])
    df = df[MODEL_FEATURES]
    return df


@app.route("/", methods=["GET"])
def health_check():
    """Health check endpoint."""
    return jsonify(
        {
            "status": "healthy",
            "message": "SuperKart Sales Prediction API is running",
            "model_loaded": model is not None,
        }
    )


@app.route("/predict", methods=["POST"])
def predict():
    """Predict sales for given product and store features."""

    if model is None:
        return jsonify({"error": "Model not loaded. Please check server logs."}), 500

    try:
        # Get JSON data from request
        data = request.get_json()

        if not data:
            return jsonify(
                {
                    "error": "No data provided. Please send JSON data in the request body."
                }
            ), 400

        # Validate input using Pydantic
        try:
            validated = PredictionInput(**data)
        except ValidationError as ve:
            return jsonify(
                {"error": "Input validation failed", "details": ve.errors()}
            ), 400

        # Preprocess input data
        input_df = preprocess_input(validated.model_dump())

        # Make prediction
        prediction = model.predict(input_df)
        predicted_sales = float(prediction[0])

        # Prepare response
        response = {
            "predicted_sales": round(predicted_sales, 2),
            "currency": "USD",
            "input_features": validated.model_dump(),
            "status": "success",
        }

        logger.info(f"βœ… Prediction successful: ${predicted_sales:.2f}")
        return jsonify(response)

    except Exception as e:
        logger.error(f"❌ Prediction error: {str(e)}")
        return jsonify({"error": f"Prediction failed: {str(e)}"}), 500


@app.route("/features", methods=["GET"])
def get_features():
    """Get information about expected input features."""

    feature_info = {
        "required_features": USER_INPUT_FEATURES,
        "feature_descriptions": {
            "Product_Weight": "Weight of the product (4.0-22.0 kg)",
            "Product_Sugar_Content": "Sugar content (Low Sugar, Regular, No Sugar)",
            "Product_Allocated_Area": "Allocated display area ratio (0.0-1.0)",
            "Product_Type": "Product category (16 types: Dairy, Soft Drinks, Meat, etc.)",
            "Product_MRP": "Maximum retail price (31.0-266.0 USD)",
            "Store_Establishment_Year": "Year store was established (1987, 1998, 1999, 2009)",
            "Store_Size": "Store size (Small, Medium, High)",
            "Store_Location_City_Type": "City type (Tier 1, Tier 2, Tier 3)",
            "Store_Type": "Store type (Supermarket Type1/2/3, Departmental Store, Food Mart)",
        },
        "example_input": {
            "Product_Weight": 12.66,
            "Product_Sugar_Content": "Low Sugar",
            "Product_Allocated_Area": 0.027,
            "Product_Type": "Frozen Foods",
            "Product_MRP": 117.08,
            "Store_Establishment_Year": 2009,
            "Store_Size": "Medium",
            "Store_Location_City_Type": "Tier 2",
            "Store_Type": "Supermarket Type2",
        },
    }

    return jsonify(feature_info)


@app.route("/predict/batch", methods=["POST"])
def predict_batch():
    """Predict sales for multiple products at once."""

    if model is None:
        return jsonify({"error": "Model not loaded. Please check server logs."}), 500

    try:
        # Get JSON data from request
        data = request.get_json()

        if not data or "predictions" not in data:
            return jsonify(
                {
                    "error": 'No data provided. Please send JSON with "predictions" array.'
                }
            ), 400

        predictions_data = data["predictions"]
        if not isinstance(predictions_data, list):
            return jsonify({"error": "Predictions must be an array of objects."}), 400

        results = []
        errors = []

        for i, item in enumerate(predictions_data):
            try:
                # Validate input using Pydantic
                try:
                    validated = PredictionInput(**item)
                except ValidationError as ve:
                    errors.append({"index": i, "error": ve.errors(), "input": item})
                    continue

                # Preprocess and predict
                input_df = preprocess_input(validated.model_dump())
                prediction = model.predict(input_df)
                predicted_sales = float(prediction[0])

                results.append(
                    {
                        "index": i,
                        "predicted_sales": round(predicted_sales, 2),
                        "input_features": validated.model_dump(),
                    }
                )

            except Exception as e:
                errors.append({"index": i, "error": str(e), "input": item})

        response = {
            "successful_predictions": len(results),
            "failed_predictions": len(errors),
            "results": results,
            "errors": errors,
            "status": "completed",
        }

        logger.info(
            f"βœ… Batch prediction completed: {len(results)} successful, {len(errors)} failed"
        )
        return jsonify(response)

    except Exception as e:
        logger.error(f"❌ Batch prediction error: {str(e)}")
        return jsonify({"error": f"Batch prediction failed: {str(e)}"}), 500


# Load model on module import (for Gunicorn compatibility)
if not load_model("./superkart_model.joblib"):
    logger.error("❌ Failed to load model. Application may not work properly.")

if __name__ == "__main__":
    # This runs only when script is executed directly (not imported by Gunicorn)
    logger.info("πŸš€ Starting SuperKart Sales Prediction API...")
    app.run(host="0.0.0.0", port=7860, debug=True)