File size: 27,699 Bytes
41dba94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
"""
SuperKart Sales Prediction Frontend

A Streamlit web application for predicting product sales using the SuperKart ML model.
This frontend provides an intuitive interface for users to input product and store features
and get sales predictions from the backend API.
"""

import warnings
import streamlit as st
import requests
import pandas as pd
import argparse
import os
import sys
from typing import Dict

# Suppress SyntaxWarnings from Streamlit library
warnings.filterwarnings("ignore", category=SyntaxWarning)

# Page configuration
st.set_page_config(
    page_title="SuperKart Sales Predictor",
    page_icon="๐Ÿ›’",
    layout="wide",
    initial_sidebar_state="expanded",
)

# Custom CSS for better styling
st.markdown(
    """
<style>
    .main-header {
        font-size: 3rem;
        color: #1f77b4;
        text-align: center;
        margin-bottom: 2rem;
    }
    .prediction-box {
        background-color: #f0f8ff;
        padding: 20px;
        border-radius: 10px;
        border-left: 5px solid #1f77b4;
        margin: 20px 0;
    }
    .success-box {
        background-color: #d4edda;
        padding: 15px;
        border-radius: 5px;
        border-left: 5px solid #28a745;
        margin: 10px 0;
    }
    .error-box {
        background-color: #f8d7da;
        padding: 15px;
        border-radius: 5px;
        border-left: 5px solid #dc3545;
        margin: 10px 0;
    }
</style>
""",
    unsafe_allow_html=True,
)


def get_backend_url():
    """Get backend URL from command line arguments, environment variables, or default."""
    # Check if running with Streamlit (sys.argv will contain streamlit run ...)
    if len(sys.argv) > 1 and "streamlit" in sys.argv[0]:
        # Parse additional arguments after the script name
        parser = argparse.ArgumentParser(description="SuperKart Frontend App")
        parser.add_argument(
            "--backend-url",
            type=str,
            default=os.getenv("BACKEND_URL", "http://localhost:7860"),
            help="Backend API URL (default: http://localhost:7860)",
        )

        # Only parse known args to avoid conflicts with Streamlit args
        try:
            known_args, _ = parser.parse_known_args()
            return known_args.backend_url
        except (SystemExit, argparse.ArgumentError):
            pass

    # Fallback to environment variable or default
    return os.getenv("BACKEND_URL", "http://localhost:7860")


# Configuration
BACKEND_URL = get_backend_url()


def make_api_request(endpoint: str, data: Dict = None, method: str = "GET") -> Dict:
    """Make API request to backend service."""
    try:
        url = f"{BACKEND_URL}{endpoint}"

        if method == "GET":
            response = requests.get(url, timeout=30)
        elif method == "POST":
            response = requests.post(url, json=data, timeout=30)

        response.raise_for_status()
        return {"success": True, "data": response.json()}

    except requests.exceptions.ConnectionError:
        return {
            "success": False,
            "error": "Cannot connect to backend API. Please ensure the backend service is running.",
        }
    except requests.exceptions.Timeout:
        return {
            "success": False,
            "error": "Request timeout. The backend service is taking too long to respond.",
        }
    except requests.exceptions.RequestException as e:
        return {"success": False, "error": f"API request failed: {str(e)}"}


def get_feature_info():
    """Get feature information from backend API."""
    result = make_api_request("/features")
    if result["success"]:
        return result["data"]
    else:
        st.error(f"Failed to get feature information: {result['error']}")
        return None


def create_input_form():
    """Create the input form for prediction."""
    st.header("๐Ÿ”ฎ Product Sales Prediction")

    # Get feature information
    feature_info = get_feature_info()
    if not feature_info:
        return None

    # Create form
    with st.form("prediction_form"):
        col1, col2 = st.columns(2)

        with col1:
            st.subheader("๐Ÿ“ฆ Product Features")

            product_weight = st.number_input(
                "Product Weight (kg)",
                min_value=0.1,
                max_value=100.0,
                value=12.66,
                step=0.1,
                help="Weight of the product in kilograms",
            )

            product_sugar_content = st.selectbox(
                "Sugar Content",
                options=["Low Sugar", "Regular", "No Sugar"],
                index=0,
                help="Sugar content level of the product",
            )

            product_allocated_area = st.number_input(
                "Allocated Display Area (Ratio)",
                min_value=0.0,
                max_value=1.0,
                value=0.027,
                step=0.001,
                format="%.3f",
                help="Ratio of allocated display area (0.0 to 1.0)",
            )

            product_type = st.selectbox(
                "Product Type",
                options=[
                    "Dairy",
                    "Soft Drinks",
                    "Meat",
                    "Fruits and Vegetables",
                    "Household",
                    "Baking Goods",
                    "Snack Foods",
                    "Frozen Foods",
                    "Breakfast",
                    "Health and Hygiene",
                    "Hard Drinks",
                    "Canned",
                    "Bread",
                    "Starchy Foods",
                    "Others",
                    "Seafood",
                ],
                index=7,  # Frozen Foods
                help="Category of the product",
            )

            product_mrp = st.number_input(
                "Maximum Retail Price ($)",
                min_value=1.0,
                max_value=1000.0,
                value=117.08,
                step=0.01,
                format="%.2f",
                help="Maximum retail price in USD",
            )

        with col2:
            st.subheader("๐Ÿช Store Features")

            store_establishment_year = st.selectbox(
                "Store Establishment Year",
                options=[1987, 1998, 1999, 2009],
                index=3,  # 2009
                help="Year when the store was established",
            )

            store_size = st.selectbox(
                "Store Size",
                options=["Small", "Medium", "High"],
                index=1,  # Medium
                help="Size category of the store",
            )

            store_location_city_type = st.selectbox(
                "City Type",
                options=["Tier 1", "Tier 2", "Tier 3"],
                index=1,  # Tier 2
                help="Type of city where the store is located",
            )

            store_type = st.selectbox(
                "Store Type",
                options=[
                    "Supermarket Type1",
                    "Supermarket Type2",
                    "Supermarket Type3",
                    "Departmental Store",
                    "Food Mart",
                ],
                index=1,  # Supermarket Type2
                help="Type/format of the store",
            )

        # Submit button
        submitted = st.form_submit_button("๐ŸŽฏ Predict Sales", type="primary")

        if submitted:
            # Prepare input data
            input_data = {
                "Product_Weight": product_weight,
                "Product_Sugar_Content": product_sugar_content,
                "Product_Allocated_Area": product_allocated_area,
                "Product_Type": product_type,
                "Product_MRP": product_mrp,
                "Store_Establishment_Year": store_establishment_year,
                "Store_Size": store_size,
                "Store_Location_City_Type": store_location_city_type,
                "Store_Type": store_type,
            }

            return input_data

    return None


def display_prediction_result(prediction_data: Dict):
    """Display the prediction result with EDA-based insights."""
    predicted_sales = prediction_data["predicted_sales"]

    # Main prediction display
    st.markdown('<div class="prediction-box">', unsafe_allow_html=True)
    col1, col2, col3 = st.columns([1, 2, 1])

    with col2:
        st.markdown(
            f"""
        <div style="text-align: center;">
            <h2>๐Ÿ’ฐ Predicted Sales Revenue</h2>
            <h1 style="color: #28a745; font-size: 4rem;">${predicted_sales:,.2f}</h1>
        </div>
        """,
            unsafe_allow_html=True,
        )

    st.markdown("</div>", unsafe_allow_html=True)

    # EDA-based insights and business metrics
    st.subheader("๐Ÿ“Š Sales Analysis & Business Insights")

    # Based on EDA: Sales range $33-$8,000, Mean: $3,464, Median: $3,452, Std: $1,066
    sales_mean = 3464
    sales_median = 3452
    sales_std = 1066
    sales_q1 = 2762
    sales_q3 = 4145

    col1, col2, col3, col4 = st.columns(4)

    with col1:
        # Performance vs Mean
        vs_mean = ((predicted_sales - sales_mean) / sales_mean) * 100
        delta_color = "normal" if abs(vs_mean) < 10 else "inverse"
        st.metric(
            label="๐Ÿ“Š vs Dataset Mean",
            value=f"${predicted_sales:,.2f}",
            delta=f"{vs_mean:+.1f}%",
            delta_color=delta_color,
        )

    with col2:
        # Performance vs Median
        vs_median = ((predicted_sales - sales_median) / sales_median) * 100
        delta_color = "normal" if abs(vs_median) < 10 else "inverse"
        st.metric(
            label="๐Ÿ“ˆ vs Dataset Median",
            value=f"${sales_median:,.2f}",
            delta=f"{vs_median:+.1f}%",
            delta_color=delta_color,
        )

    with col3:
        # Percentile ranking based on EDA quartiles
        if predicted_sales <= sales_q1:
            percentile = "Bottom 25%"
            percentile_color = "๐Ÿ”ด"
        elif predicted_sales <= sales_median:
            percentile = "25th-50th"
            percentile_color = "๐ŸŸก"
        elif predicted_sales <= sales_q3:
            percentile = "50th-75th"
            percentile_color = "๐ŸŸ "
        else:
            percentile = "Top 25%"
            percentile_color = "๐ŸŸข"

        st.metric(
            label="๐ŸŽฏ Performance Percentile",
            value=f"{percentile_color} {percentile}",
            delta=None,
        )

    with col4:
        # Standard deviation analysis
        z_score = (predicted_sales - sales_mean) / sales_std
        if abs(z_score) <= 1:
            volatility = "Normal"
            vol_color = "๐ŸŸข"
        elif abs(z_score) <= 2:
            volatility = "Moderate"
            vol_color = "๐ŸŸก"
        else:
            volatility = "High"
            vol_color = "๐Ÿ”ด"

        st.metric(
            label="๐Ÿ“‰ Sales Volatility",
            value=f"{vol_color} {volatility}",
            delta=f"ฯƒ: {z_score:+.1f}",
        )

    # Business insights section
    st.subheader("๐Ÿ’ผ Business Recommendations & Next Steps")

    # Performance Summary Box
    if predicted_sales >= sales_q3:  # Top 25%
        performance_level = "โญ Excellent"
        performance_color = "#28a745"
        summary_message = (
            "This product is predicted to perform in the top 25% of SuperKart sales!"
        )
    elif predicted_sales >= sales_median:  # Above median
        performance_level = "โœ… Good"
        performance_color = "#17a2b8"
        summary_message = (
            "This product is predicted to perform above the historical average."
        )
    elif predicted_sales >= sales_q1:  # Above bottom quartile
        performance_level = "โš ๏ธ Below Average"
        performance_color = "#ffc107"
        summary_message = (
            "This product may underperform compared to typical SuperKart sales."
        )
    else:  # Bottom 25%
        performance_level = "๐Ÿ”ด Needs Attention"
        performance_color = "#dc3545"
        summary_message = (
            "This product is predicted to be in the bottom 25% of sales performance."
        )

    # Performance summary box
    st.markdown(
        f"""
        <div style="background-color: {performance_color}20; padding: 20px; border-radius: 10px; 
             border-left: 5px solid {performance_color}; margin: 15px 0;">
            <h4 style="color: {performance_color}; margin: 0 0 10px 0;">
                {performance_level} Performance Expected
            </h4>
            <p style="margin: 0; font-size: 16px;">{summary_message}</p>
        </div>
        """,
        unsafe_allow_html=True,
    )

    # Three-column layout for insights
    col1, col2, col3 = st.columns(3)

    with col1:
        st.markdown("#### ๐Ÿ’ฐ Financial Impact")

        # Revenue tier classification (moved to top for consistency)
        if predicted_sales >= 5000:
            tier = "๐Ÿ† Premium Tier"
        elif predicted_sales >= 3000:
            tier = "๐Ÿฅˆ Standard Tier"
        else:
            tier = "๐Ÿฅ‰ Value Tier"
        st.info(f"**Revenue Classification:** {tier}")

        # Financial metrics with clear labels
        profit_margin = 0.2  # 20% profit margin
        estimated_profit = predicted_sales * profit_margin
        st.metric("Predicted Revenue", f"${predicted_sales:,.0f}")
        st.metric("Estimated Profit (20%)", f"${estimated_profit:,.0f}")

    with col2:
        st.markdown("#### ๐Ÿ“Š Market Position")

        # Clear market positioning
        vs_mean_pct = ((predicted_sales - sales_mean) / sales_mean) * 100
        if vs_mean_pct > 10:
            position = "๐Ÿš€ Above Market Average"
        elif vs_mean_pct > -10:
            position = "๐Ÿ“Š Market Average"
        else:
            position = "๐Ÿ“‰ Below Market Average"

        st.success(position)
        st.write(f"**vs Historical Mean:** {vs_mean_pct:+.1f}%")
        st.write("**Market Range:** \\$33 - \\$8,000")
        st.write(f"**Your Prediction:** ${predicted_sales:,.0f}")

    with col3:
        st.markdown("#### ๐ŸŽฏ Action Items")

        # Clear, actionable recommendations
        if predicted_sales < sales_q1:
            st.warning("**Low Performance Risk**")
            st.write("**Immediate Actions:**")
            st.write("โ€ข Launch promotional campaign")
            st.write("โ€ข Review pricing strategy")
            st.write("โ€ข Optimize product placement")
            st.write("โ€ข Analyze competitor offerings")
        elif predicted_sales > sales_q3:
            st.success("**High Performance Opportunity**")
            st.write("**Recommended Actions:**")
            st.write("โ€ข Ensure adequate stock levels")
            st.write("โ€ข Consider premium pricing")
            st.write("โ€ข Expand to similar products")
            st.write("โ€ข Allocate prime shelf space")
        else:
            st.info("**Standard Performance Expected**")
            st.write("**Monitor & Optimize:**")
            st.write("โ€ข Track actual vs predicted")
            st.write("โ€ข A/B test marketing approaches")
            st.write("โ€ข Monitor competitor activity")
            st.write("โ€ข Adjust inventory as needed")


def create_input_summary(input_data: Dict):
    """Create a summary of input features."""
    st.subheader("๐Ÿ“‹ Input Summary")

    # Create two columns for better layout
    col1, col2 = st.columns(2)

    with col1:
        st.markdown("**Product Information:**")
        st.write(f"โ€ข Weight: {input_data['Product_Weight']} kg")
        st.write(f"โ€ข Sugar Content: {input_data['Product_Sugar_Content']}")
        st.write(f"โ€ข Display Area: {input_data['Product_Allocated_Area']:.3f}")
        st.write(f"โ€ข Type: {input_data['Product_Type']}")
        st.write(f"โ€ข MRP: ${input_data['Product_MRP']:.2f}")

    with col2:
        st.markdown("**Store Information:**")
        st.write(f"โ€ข Establishment Year: {input_data['Store_Establishment_Year']}")
        st.write(f"โ€ข Size: {input_data['Store_Size']}")
        st.write(f"โ€ข City Type: {input_data['Store_Location_City_Type']}")
        st.write(f"โ€ข Store Type: {input_data['Store_Type']}")


def create_batch_prediction():
    """Create batch prediction interface."""
    st.header("๐Ÿ“Š Batch Prediction")

    st.markdown("""
    Upload a CSV file with multiple products to get batch predictions.
    The CSV should contain all required columns with the same names as in the single prediction form.
    """)

    # File uploader
    uploaded_file = st.file_uploader(
        "Choose a CSV file",
        type="csv",
        help="Upload a CSV file with product and store features",
    )

    if uploaded_file is not None:
        try:
            # Read the CSV file
            df = pd.read_csv(uploaded_file)

            # Display the uploaded data
            st.subheader("๐Ÿ“‚ Uploaded Data")
            st.dataframe(df.head(10))

            if st.button("๐Ÿš€ Run Batch Prediction", type="primary"):
                # Convert DataFrame to list of dictionaries
                predictions_data = df.to_dict("records")

                # Make batch prediction request
                result = make_api_request(
                    "/predict/batch", {"predictions": predictions_data}, "POST"
                )

                if result["success"]:
                    batch_results = result["data"]

                    # Display results
                    st.subheader("๐Ÿ“ˆ Batch Prediction Results")

                    col1, col2, col3 = st.columns(3)
                    with col1:
                        st.metric(
                            "โœ… Successful", batch_results["successful_predictions"]
                        )
                    with col2:
                        st.metric("โŒ Failed", batch_results["failed_predictions"])
                    with col3:
                        st.metric("๐Ÿ“Š Total", len(predictions_data))

                    # Show successful predictions
                    if batch_results["results"]:
                        st.subheader("๐ŸŽฏ Successful Predictions")

                        # Create a user-friendly results DataFrame
                        display_results = []
                        for result in batch_results["results"]:
                            # Extract readable product info
                            input_features = result["input_features"]

                            # Determine performance category
                            sales = result["predicted_sales"]
                            if sales >= 4145:  # Top 25% (Q3)
                                category = "๐ŸŸข High"
                            elif sales >= 3452:  # Above median
                                category = "๐ŸŸก Good"
                            elif sales >= 2762:  # Above Q1
                                category = "๐ŸŸ  Average"
                            else:
                                category = "๐Ÿ”ด Low"

                            display_row = {
                                "Row": result["index"] + 1,
                                "Product Type": input_features["Product_Type"],
                                "Weight (kg)": input_features["Product_Weight"],
                                "MRP ($)": f"${input_features['Product_MRP']:.2f}",
                                "Store Size": input_features["Store_Size"],
                                "Store Type": input_features["Store_Type"],
                                "Predicted Sales": f"${sales:,.2f}",
                                "Performance": category,
                            }
                            display_results.append(display_row)

                        display_df = pd.DataFrame(display_results)

                        # Show the clean results table
                        st.dataframe(
                            display_df, use_container_width=True, hide_index=True
                        )

                        # Summary statistics
                        sales_values = [
                            result["predicted_sales"]
                            for result in batch_results["results"]
                        ]

                        col1, col2, col3, col4 = st.columns(4)
                        with col1:
                            st.metric("๐Ÿ’ฐ Total Revenue", f"${sum(sales_values):,.0f}")
                        with col2:
                            st.metric(
                                "๐Ÿ“Š Average Sale",
                                f"${sum(sales_values) / len(sales_values):,.0f}",
                            )
                        with col3:
                            high_performers = len(
                                [s for s in sales_values if s >= 4145]
                            )
                            st.metric("๐ŸŸข High Performers", f"{high_performers}")
                        with col4:
                            low_performers = len([s for s in sales_values if s < 2762])
                            st.metric("๐Ÿ”ด Needs Attention", f"{low_performers}")

                        # Download options
                        col1, col2 = st.columns(2)
                        with col1:
                            # Download user-friendly results
                            csv_display = display_df.to_csv(index=False)
                            st.download_button(
                                label="๐Ÿ“ฅ Download Summary Results",
                                data=csv_display,
                                file_name="batch_predictions_summary.csv",
                                mime="text/csv",
                            )

                        with col2:
                            # Download detailed results for technical users
                            detailed_results = []
                            for result in batch_results["results"]:
                                detailed_row = {
                                    "row_index": result["index"],
                                    "predicted_sales": result["predicted_sales"],
                                    **result["input_features"],
                                }
                                detailed_results.append(detailed_row)

                            detailed_df = pd.DataFrame(detailed_results)
                            csv_detailed = detailed_df.to_csv(index=False)
                            st.download_button(
                                label="๐Ÿ”ง Download Detailed Results",
                                data=csv_detailed,
                                file_name="batch_predictions_detailed.csv",
                                mime="text/csv",
                            )

                    # Show errors if any
                    if batch_results["errors"]:
                        st.subheader("โš ๏ธ Prediction Errors")
                        errors_df = pd.DataFrame(batch_results["errors"])
                        st.dataframe(errors_df)

                else:
                    st.error(f"Batch prediction failed: {result['error']}")

        except Exception as e:
            st.error(f"Error processing file: {str(e)}")


def main():
    """Main application function."""
    # Title and description
    st.markdown(
        '<h1 class="main-header">๐Ÿ›’ SuperKart Sales Predictor</h1>',
        unsafe_allow_html=True,
    )

    st.markdown(
        """
    <div style="text-align: center; margin-bottom: 2rem;">
        <p style="font-size: 1.2rem; color: #666;">
            Predict product sales revenue using machine learning based on product and store characteristics
        </p>
    </div>
    """,
        unsafe_allow_html=True,
    )

    # Check backend health
    health_result = make_api_request("/")
    if not health_result["success"]:
        st.error(
            f"โš ๏ธ Backend API is not available at `{BACKEND_URL}`. Please ensure the backend service is running."
        )
        st.info(
            """
            **How to specify a different backend URL:**

            1. **Command line argument:**
               ```
               streamlit run app.py -- --backend-url http://your-backend:5050
               ```

            2. **Environment variable:**
               ```
               export BACKEND_URL=http://your-backend:5050
               streamlit run app.py
               ```
            """
        )
        st.stop()

    # Sidebar navigation
    st.sidebar.title("๐Ÿงญ Navigation")

    # Display current backend URL and connection status
    st.sidebar.markdown("---")
    st.sidebar.markdown("**๐Ÿ”— Backend Configuration**")
    st.sidebar.code(BACKEND_URL, language=None)

    # Show connection status
    if health_result["success"]:
        st.sidebar.success("๐ŸŸข Connected")
        if "data" in health_result and "model_loaded" in health_result["data"]:
            model_status = (
                "๐Ÿค– Model Loaded"
                if health_result["data"]["model_loaded"]
                else "โš ๏ธ Model Not Loaded"
            )
            st.sidebar.info(model_status)
    else:
        st.sidebar.error("๐Ÿ”ด Disconnected")

    st.sidebar.markdown("---")

    app_mode = st.sidebar.selectbox(
        "Choose App Mode",
        ["Single Prediction", "Batch Prediction", "API Documentation"],
    )

    if app_mode == "Single Prediction":
        # Single prediction interface
        input_data = create_input_form()

        if input_data:
            # Make prediction
            result = make_api_request("/predict", input_data, "POST")

            if result["success"]:
                prediction_data = result["data"]

                # Display results
                display_prediction_result(prediction_data)

                # Show input summary
                with st.expander("๐Ÿ“‹ View Input Details", expanded=False):
                    create_input_summary(input_data)

                # Success message
                st.markdown(
                    '<div class="success-box">โœ… Prediction completed successfully!</div>',
                    unsafe_allow_html=True,
                )

            else:
                st.markdown(
                    f'<div class="error-box">โŒ Prediction failed: {result["error"]}</div>',
                    unsafe_allow_html=True,
                )

    elif app_mode == "Batch Prediction":
        create_batch_prediction()

    elif app_mode == "API Documentation":
        st.header("๐Ÿ“š API Documentation")

        # Get feature information
        feature_info = get_feature_info()

        if feature_info:
            st.subheader("๐Ÿ”ง Required Features")

            features_df = pd.DataFrame(
                [
                    {"Feature": k, "Description": v}
                    for k, v in feature_info["feature_descriptions"].items()
                ]
            )
            st.table(features_df)

            st.subheader("๐Ÿ“ Example Input")
            st.json(feature_info["example_input"])

            st.subheader("๐ŸŒ API Endpoints")
            st.markdown("""
            - **GET /**: Health check
            - **POST /predict**: Single prediction
            - **POST /predict/batch**: Batch prediction
            - **GET /features**: Get feature information
            """)

    # Footer
    st.markdown("---")
    st.markdown(
        "<div style='text-align: center; color: #666;'>"
        "SuperKart Sales Prediction System | Krishnaswamy Subramanian"
        "</div>",
        unsafe_allow_html=True,
    )


if __name__ == "__main__":
    main()