""" SuperKart Sales Prediction Frontend A Streamlit web application for predicting product sales using the SuperKart ML model. This frontend provides an intuitive interface for users to input product and store features and get sales predictions from the backend API. """ import warnings import streamlit as st import requests import pandas as pd import argparse import os import sys from typing import Dict # Suppress SyntaxWarnings from Streamlit library warnings.filterwarnings("ignore", category=SyntaxWarning) # Page configuration st.set_page_config( page_title="SuperKart Sales Predictor", page_icon="🛒", layout="wide", initial_sidebar_state="expanded", ) # Custom CSS for better styling st.markdown( """ """, unsafe_allow_html=True, ) def get_backend_url(): """Get backend URL from command line arguments, environment variables, or default.""" # Check if running with Streamlit (sys.argv will contain streamlit run ...) if len(sys.argv) > 1 and "streamlit" in sys.argv[0]: # Parse additional arguments after the script name parser = argparse.ArgumentParser(description="SuperKart Frontend App") parser.add_argument( "--backend-url", type=str, default=os.getenv("BACKEND_URL", "http://localhost:7860"), help="Backend API URL (default: http://localhost:7860)", ) # Only parse known args to avoid conflicts with Streamlit args try: known_args, _ = parser.parse_known_args() return known_args.backend_url except (SystemExit, argparse.ArgumentError): pass # Fallback to environment variable or default return os.getenv("BACKEND_URL", "http://localhost:7860") # Configuration BACKEND_URL = get_backend_url() def make_api_request(endpoint: str, data: Dict = None, method: str = "GET") -> Dict: """Make API request to backend service.""" try: url = f"{BACKEND_URL}{endpoint}" if method == "GET": response = requests.get(url, timeout=30) elif method == "POST": response = requests.post(url, json=data, timeout=30) response.raise_for_status() return {"success": True, "data": response.json()} except requests.exceptions.ConnectionError: return { "success": False, "error": "Cannot connect to backend API. Please ensure the backend service is running.", } except requests.exceptions.Timeout: return { "success": False, "error": "Request timeout. The backend service is taking too long to respond.", } except requests.exceptions.RequestException as e: return {"success": False, "error": f"API request failed: {str(e)}"} def get_feature_info(): """Get feature information from backend API.""" result = make_api_request("/features") if result["success"]: return result["data"] else: st.error(f"Failed to get feature information: {result['error']}") return None def create_input_form(): """Create the input form for prediction.""" st.header("🔮 Product Sales Prediction") # Get feature information feature_info = get_feature_info() if not feature_info: return None # Create form with st.form("prediction_form"): col1, col2 = st.columns(2) with col1: st.subheader("📦 Product Features") product_weight = st.number_input( "Product Weight (kg)", min_value=0.1, max_value=100.0, value=12.66, step=0.1, help="Weight of the product in kilograms", ) product_sugar_content = st.selectbox( "Sugar Content", options=["Low Sugar", "Regular", "No Sugar"], index=0, help="Sugar content level of the product", ) product_allocated_area = st.number_input( "Allocated Display Area (Ratio)", min_value=0.0, max_value=1.0, value=0.027, step=0.001, format="%.3f", help="Ratio of allocated display area (0.0 to 1.0)", ) product_type = st.selectbox( "Product Type", options=[ "Dairy", "Soft Drinks", "Meat", "Fruits and Vegetables", "Household", "Baking Goods", "Snack Foods", "Frozen Foods", "Breakfast", "Health and Hygiene", "Hard Drinks", "Canned", "Bread", "Starchy Foods", "Others", "Seafood", ], index=7, # Frozen Foods help="Category of the product", ) product_mrp = st.number_input( "Maximum Retail Price ($)", min_value=1.0, max_value=1000.0, value=117.08, step=0.01, format="%.2f", help="Maximum retail price in USD", ) with col2: st.subheader("🏪 Store Features") store_establishment_year = st.selectbox( "Store Establishment Year", options=[1987, 1998, 1999, 2009], index=3, # 2009 help="Year when the store was established", ) store_size = st.selectbox( "Store Size", options=["Small", "Medium", "High"], index=1, # Medium help="Size category of the store", ) store_location_city_type = st.selectbox( "City Type", options=["Tier 1", "Tier 2", "Tier 3"], index=1, # Tier 2 help="Type of city where the store is located", ) store_type = st.selectbox( "Store Type", options=[ "Supermarket Type1", "Supermarket Type2", "Supermarket Type3", "Departmental Store", "Food Mart", ], index=1, # Supermarket Type2 help="Type/format of the store", ) # Submit button submitted = st.form_submit_button("🎯 Predict Sales", type="primary") if submitted: # Prepare input data input_data = { "Product_Weight": product_weight, "Product_Sugar_Content": product_sugar_content, "Product_Allocated_Area": product_allocated_area, "Product_Type": product_type, "Product_MRP": product_mrp, "Store_Establishment_Year": store_establishment_year, "Store_Size": store_size, "Store_Location_City_Type": store_location_city_type, "Store_Type": store_type, } return input_data return None def display_prediction_result(prediction_data: Dict): """Display the prediction result with EDA-based insights.""" predicted_sales = prediction_data["predicted_sales"] # Main prediction display st.markdown('
', unsafe_allow_html=True) col1, col2, col3 = st.columns([1, 2, 1]) with col2: st.markdown( f"""

💰 Predicted Sales Revenue

${predicted_sales:,.2f}

""", unsafe_allow_html=True, ) st.markdown("
", unsafe_allow_html=True) # EDA-based insights and business metrics st.subheader("📊 Sales Analysis & Business Insights") # Based on EDA: Sales range $33-$8,000, Mean: $3,464, Median: $3,452, Std: $1,066 sales_mean = 3464 sales_median = 3452 sales_std = 1066 sales_q1 = 2762 sales_q3 = 4145 col1, col2, col3, col4 = st.columns(4) with col1: # Performance vs Mean vs_mean = ((predicted_sales - sales_mean) / sales_mean) * 100 delta_color = "normal" if abs(vs_mean) < 10 else "inverse" st.metric( label="📊 vs Dataset Mean", value=f"${predicted_sales:,.2f}", delta=f"{vs_mean:+.1f}%", delta_color=delta_color, ) with col2: # Performance vs Median vs_median = ((predicted_sales - sales_median) / sales_median) * 100 delta_color = "normal" if abs(vs_median) < 10 else "inverse" st.metric( label="📈 vs Dataset Median", value=f"${sales_median:,.2f}", delta=f"{vs_median:+.1f}%", delta_color=delta_color, ) with col3: # Percentile ranking based on EDA quartiles if predicted_sales <= sales_q1: percentile = "Bottom 25%" percentile_color = "🔴" elif predicted_sales <= sales_median: percentile = "25th-50th" percentile_color = "🟡" elif predicted_sales <= sales_q3: percentile = "50th-75th" percentile_color = "🟠" else: percentile = "Top 25%" percentile_color = "🟢" st.metric( label="🎯 Performance Percentile", value=f"{percentile_color} {percentile}", delta=None, ) with col4: # Standard deviation analysis z_score = (predicted_sales - sales_mean) / sales_std if abs(z_score) <= 1: volatility = "Normal" vol_color = "🟢" elif abs(z_score) <= 2: volatility = "Moderate" vol_color = "🟡" else: volatility = "High" vol_color = "🔴" st.metric( label="📉 Sales Volatility", value=f"{vol_color} {volatility}", delta=f"σ: {z_score:+.1f}", ) # Business insights section st.subheader("💼 Business Recommendations & Next Steps") # Performance Summary Box if predicted_sales >= sales_q3: # Top 25% performance_level = "⭐ Excellent" performance_color = "#28a745" summary_message = ( "This product is predicted to perform in the top 25% of SuperKart sales!" ) elif predicted_sales >= sales_median: # Above median performance_level = "✅ Good" performance_color = "#17a2b8" summary_message = ( "This product is predicted to perform above the historical average." ) elif predicted_sales >= sales_q1: # Above bottom quartile performance_level = "⚠️ Below Average" performance_color = "#ffc107" summary_message = ( "This product may underperform compared to typical SuperKart sales." ) else: # Bottom 25% performance_level = "🔴 Needs Attention" performance_color = "#dc3545" summary_message = ( "This product is predicted to be in the bottom 25% of sales performance." ) # Performance summary box st.markdown( f"""

{performance_level} Performance Expected

{summary_message}

""", unsafe_allow_html=True, ) # Three-column layout for insights col1, col2, col3 = st.columns(3) with col1: st.markdown("#### 💰 Financial Impact") # Revenue tier classification (moved to top for consistency) if predicted_sales >= 5000: tier = "🏆 Premium Tier" elif predicted_sales >= 3000: tier = "🥈 Standard Tier" else: tier = "🥉 Value Tier" st.info(f"**Revenue Classification:** {tier}") # Financial metrics with clear labels profit_margin = 0.2 # 20% profit margin estimated_profit = predicted_sales * profit_margin st.metric("Predicted Revenue", f"${predicted_sales:,.0f}") st.metric("Estimated Profit (20%)", f"${estimated_profit:,.0f}") with col2: st.markdown("#### 📊 Market Position") # Clear market positioning vs_mean_pct = ((predicted_sales - sales_mean) / sales_mean) * 100 if vs_mean_pct > 10: position = "🚀 Above Market Average" elif vs_mean_pct > -10: position = "📊 Market Average" else: position = "📉 Below Market Average" st.success(position) st.write(f"**vs Historical Mean:** {vs_mean_pct:+.1f}%") st.write("**Market Range:** \\$33 - \\$8,000") st.write(f"**Your Prediction:** ${predicted_sales:,.0f}") with col3: st.markdown("#### 🎯 Action Items") # Clear, actionable recommendations if predicted_sales < sales_q1: st.warning("**Low Performance Risk**") st.write("**Immediate Actions:**") st.write("• Launch promotional campaign") st.write("• Review pricing strategy") st.write("• Optimize product placement") st.write("• Analyze competitor offerings") elif predicted_sales > sales_q3: st.success("**High Performance Opportunity**") st.write("**Recommended Actions:**") st.write("• Ensure adequate stock levels") st.write("• Consider premium pricing") st.write("• Expand to similar products") st.write("• Allocate prime shelf space") else: st.info("**Standard Performance Expected**") st.write("**Monitor & Optimize:**") st.write("• Track actual vs predicted") st.write("• A/B test marketing approaches") st.write("• Monitor competitor activity") st.write("• Adjust inventory as needed") def create_input_summary(input_data: Dict): """Create a summary of input features.""" st.subheader("📋 Input Summary") # Create two columns for better layout col1, col2 = st.columns(2) with col1: st.markdown("**Product Information:**") st.write(f"• Weight: {input_data['Product_Weight']} kg") st.write(f"• Sugar Content: {input_data['Product_Sugar_Content']}") st.write(f"• Display Area: {input_data['Product_Allocated_Area']:.3f}") st.write(f"• Type: {input_data['Product_Type']}") st.write(f"• MRP: ${input_data['Product_MRP']:.2f}") with col2: st.markdown("**Store Information:**") st.write(f"• Establishment Year: {input_data['Store_Establishment_Year']}") st.write(f"• Size: {input_data['Store_Size']}") st.write(f"• City Type: {input_data['Store_Location_City_Type']}") st.write(f"• Store Type: {input_data['Store_Type']}") def create_batch_prediction(): """Create batch prediction interface.""" st.header("📊 Batch Prediction") st.markdown(""" Upload a CSV file with multiple products to get batch predictions. The CSV should contain all required columns with the same names as in the single prediction form. """) # File uploader uploaded_file = st.file_uploader( "Choose a CSV file", type="csv", help="Upload a CSV file with product and store features", ) if uploaded_file is not None: try: # Read the CSV file df = pd.read_csv(uploaded_file) # Display the uploaded data st.subheader("📂 Uploaded Data") st.dataframe(df.head(10)) if st.button("🚀 Run Batch Prediction", type="primary"): # Convert DataFrame to list of dictionaries predictions_data = df.to_dict("records") # Make batch prediction request result = make_api_request( "/predict/batch", {"predictions": predictions_data}, "POST" ) if result["success"]: batch_results = result["data"] # Display results st.subheader("📈 Batch Prediction Results") col1, col2, col3 = st.columns(3) with col1: st.metric( "✅ Successful", batch_results["successful_predictions"] ) with col2: st.metric("❌ Failed", batch_results["failed_predictions"]) with col3: st.metric("📊 Total", len(predictions_data)) # Show successful predictions if batch_results["results"]: st.subheader("🎯 Successful Predictions") # Create a user-friendly results DataFrame display_results = [] for result in batch_results["results"]: # Extract readable product info input_features = result["input_features"] # Determine performance category sales = result["predicted_sales"] if sales >= 4145: # Top 25% (Q3) category = "🟢 High" elif sales >= 3452: # Above median category = "🟡 Good" elif sales >= 2762: # Above Q1 category = "🟠 Average" else: category = "🔴 Low" display_row = { "Row": result["index"] + 1, "Product Type": input_features["Product_Type"], "Weight (kg)": input_features["Product_Weight"], "MRP ($)": f"${input_features['Product_MRP']:.2f}", "Store Size": input_features["Store_Size"], "Store Type": input_features["Store_Type"], "Predicted Sales": f"${sales:,.2f}", "Performance": category, } display_results.append(display_row) display_df = pd.DataFrame(display_results) # Show the clean results table st.dataframe( display_df, use_container_width=True, hide_index=True ) # Summary statistics sales_values = [ result["predicted_sales"] for result in batch_results["results"] ] col1, col2, col3, col4 = st.columns(4) with col1: st.metric("💰 Total Revenue", f"${sum(sales_values):,.0f}") with col2: st.metric( "📊 Average Sale", f"${sum(sales_values) / len(sales_values):,.0f}", ) with col3: high_performers = len( [s for s in sales_values if s >= 4145] ) st.metric("🟢 High Performers", f"{high_performers}") with col4: low_performers = len([s for s in sales_values if s < 2762]) st.metric("🔴 Needs Attention", f"{low_performers}") # Download options col1, col2 = st.columns(2) with col1: # Download user-friendly results csv_display = display_df.to_csv(index=False) st.download_button( label="📥 Download Summary Results", data=csv_display, file_name="batch_predictions_summary.csv", mime="text/csv", ) with col2: # Download detailed results for technical users detailed_results = [] for result in batch_results["results"]: detailed_row = { "row_index": result["index"], "predicted_sales": result["predicted_sales"], **result["input_features"], } detailed_results.append(detailed_row) detailed_df = pd.DataFrame(detailed_results) csv_detailed = detailed_df.to_csv(index=False) st.download_button( label="🔧 Download Detailed Results", data=csv_detailed, file_name="batch_predictions_detailed.csv", mime="text/csv", ) # Show errors if any if batch_results["errors"]: st.subheader("⚠️ Prediction Errors") errors_df = pd.DataFrame(batch_results["errors"]) st.dataframe(errors_df) else: st.error(f"Batch prediction failed: {result['error']}") except Exception as e: st.error(f"Error processing file: {str(e)}") def main(): """Main application function.""" # Title and description st.markdown( '

🛒 SuperKart Sales Predictor

', unsafe_allow_html=True, ) st.markdown( """

Predict product sales revenue using machine learning based on product and store characteristics

""", unsafe_allow_html=True, ) # Check backend health health_result = make_api_request("/") if not health_result["success"]: st.error( f"⚠️ Backend API is not available at `{BACKEND_URL}`. Please ensure the backend service is running." ) st.info( """ **How to specify a different backend URL:** 1. **Command line argument:** ``` streamlit run app.py -- --backend-url http://your-backend:5050 ``` 2. **Environment variable:** ``` export BACKEND_URL=http://your-backend:5050 streamlit run app.py ``` """ ) st.stop() # Sidebar navigation st.sidebar.title("🧭 Navigation") # Display current backend URL and connection status st.sidebar.markdown("---") st.sidebar.markdown("**🔗 Backend Configuration**") st.sidebar.code(BACKEND_URL, language=None) # Show connection status if health_result["success"]: st.sidebar.success("🟢 Connected") if "data" in health_result and "model_loaded" in health_result["data"]: model_status = ( "🤖 Model Loaded" if health_result["data"]["model_loaded"] else "⚠️ Model Not Loaded" ) st.sidebar.info(model_status) else: st.sidebar.error("🔴 Disconnected") st.sidebar.markdown("---") app_mode = st.sidebar.selectbox( "Choose App Mode", ["Single Prediction", "Batch Prediction", "API Documentation"], ) if app_mode == "Single Prediction": # Single prediction interface input_data = create_input_form() if input_data: # Make prediction result = make_api_request("/predict", input_data, "POST") if result["success"]: prediction_data = result["data"] # Display results display_prediction_result(prediction_data) # Show input summary with st.expander("📋 View Input Details", expanded=False): create_input_summary(input_data) # Success message st.markdown( '
✅ Prediction completed successfully!
', unsafe_allow_html=True, ) else: st.markdown( f'
❌ Prediction failed: {result["error"]}
', unsafe_allow_html=True, ) elif app_mode == "Batch Prediction": create_batch_prediction() elif app_mode == "API Documentation": st.header("📚 API Documentation") # Get feature information feature_info = get_feature_info() if feature_info: st.subheader("🔧 Required Features") features_df = pd.DataFrame( [ {"Feature": k, "Description": v} for k, v in feature_info["feature_descriptions"].items() ] ) st.table(features_df) st.subheader("📝 Example Input") st.json(feature_info["example_input"]) st.subheader("🌐 API Endpoints") st.markdown(""" - **GET /**: Health check - **POST /predict**: Single prediction - **POST /predict/batch**: Batch prediction - **GET /features**: Get feature information """) # Footer st.markdown("---") st.markdown( "
" "SuperKart Sales Prediction System | Krishnaswamy Subramanian" "
", unsafe_allow_html=True, ) if __name__ == "__main__": main()