Spaces:
Running
Running
File size: 13,424 Bytes
8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce e60537d 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d e60537d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce e60537d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce e60537d 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d e60537d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d e60537d 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d cbbd0ce 8bdaa9d e60537d 8bdaa9d cbbd0ce 8bdaa9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
import gc
import gradio as gr
import torch
from huggingface_hub import hf_hub_download, HfApi, login, list_repo_files
from safetensors import safe_open
from safetensors.torch import save_file, load_file
import os
import shutil
import json
api = HfApi()
def info_fn(text):
gr.Info(text)
def warning_fn(text):
gr.Warning(text)
def load_lora_state(lora_model_name):
"""Download and load LoRA adapter weights"""
temp_lora_dir = "/tmp/lora_adapter"
os.makedirs(temp_lora_dir, exist_ok=True)
# Download adapter config
config_path = hf_hub_download(
repo_id=lora_model_name,
filename="adapter_config.json",
local_dir=temp_lora_dir,
local_dir_use_symlinks=False
)
with open(config_path, 'r') as f:
lora_config = json.load(f)
scale = lora_config['lora_alpha'] / lora_config['r']
# Download adapter weights
try:
adapter_path = hf_hub_download(
repo_id=lora_model_name,
filename="adapter_model.safetensors",
local_dir=temp_lora_dir,
local_dir_use_symlinks=False
)
lora_state = load_file(adapter_path, device='cpu')
except:
adapter_path = hf_hub_download(
repo_id=lora_model_name,
filename="adapter_model.bin",
local_dir=temp_lora_dir,
local_dir_use_symlinks=False
)
lora_state = torch.load(adapter_path, map_location='cpu')
return lora_state, scale, temp_lora_dir
def find_lora_weights(lora_state, key):
"""Find corresponding LoRA A and B weights for a given key"""
lora_A = None
lora_B = None
# Remove .weight suffix and handle potential prefixes
clean_key = key.replace('.weight', '')
for lora_key, lora_weight in lora_state.items():
if clean_key in lora_key or clean_key.replace('language_model.', '') in lora_key:
if 'lora_A' in lora_key:
lora_A = lora_weight
elif 'lora_B' in lora_key:
lora_B = lora_weight
# Both should be None or both should have values
if (lora_A is None) != (lora_B is None):
return None, None
return lora_A, lora_B
def download_and_upload_non_model_files(base_model_name, output_repo_name):
"""Download and upload non-model files (config, tokenizer, etc.)"""
temp_config_dir = "/tmp/config_files"
os.makedirs(temp_config_dir, exist_ok=True)
try:
# List all files in the repository
files = list_repo_files(repo_id=base_model_name)
# Filter non-model files
non_model_files = [
f for f in files
if not (f.startswith('model') and f.endswith('.safetensors'))
]
# Download and upload each non-model file
for filename in non_model_files:
if filename.endswith(('.gguf', '.bin')) and 'model' in filename:
continue # Skip other model formats
try:
file_path = hf_hub_download(
repo_id=base_model_name,
filename=filename,
local_dir=temp_config_dir,
local_dir_use_symlinks=False
)
# Upload to output repo
api.upload_file(
path_or_fileobj=file_path,
path_in_repo=filename,
repo_id=output_repo_name,
repo_type="model"
)
except Exception as e:
info_fn(f"Skipping {filename}: {e}")
finally:
shutil.rmtree(temp_config_dir, ignore_errors=True)
def merge_lora_efficient(hf_token, base_model_name, lora_model_name, output_repo_name,
multiplicative_lora, progress=gr.Progress()):
temp_lora_dir = None
try:
login(hf_token)
progress(0.1, desc="Loading LoRA adapter...")
info_fn("Loading LoRA adapter...")
# Load LoRA state (this downloads the adapter)
lora_state, scale, temp_lora_dir = load_lora_state(lora_model_name)
info_fn(f"Using LoRA scale: {scale}")
progress(0.2, desc="Creating output repository...")
# Create repository
try:
repo_url = api.create_repo(repo_id=output_repo_name, exist_ok=True)
info_fn(f"Repository created/updated: {repo_url}")
except Exception as e:
warning_fn(f"Repository might already exist: {e}")
progress(0.3, desc="Uploading configuration files...")
info_fn("Uploading configuration files...")
# Download and upload non-model files
download_and_upload_non_model_files(base_model_name, output_repo_name)
progress(0.4, desc="Finding model shards...")
info_fn("Finding model shards...")
# Get list of all safetensors files
all_files = list_repo_files(repo_id=base_model_name)
shard_files = [f for f in all_files if f.startswith('model') and f.endswith('.safetensors')]
if not shard_files:
raise FileNotFoundError("No model safetensors files found in the repository")
info_fn(f"Found {len(shard_files)} model shards to process")
merged_tensors = 0
total_shards = len(shard_files)
# Process each shard individually
for i, shard_filename in enumerate(shard_files):
progress(0.4 + (i / total_shards) * 0.5,
desc=f"Processing {shard_filename} ({i+1}/{total_shards})")
info_fn(f"Processing shard {i+1}/{total_shards}: {shard_filename}")
# Create temporary directory for this shard only
temp_shard_dir = f"/tmp/shard_{i}"
os.makedirs(temp_shard_dir, exist_ok=True)
try:
# Download the current shard
shard_path = hf_hub_download(
repo_id=base_model_name,
filename=shard_filename,
local_dir=temp_shard_dir,
local_dir_use_symlinks=False
)
# Process the shard
tensors = {}
shard_merged_count = 0
with safe_open(shard_path, framework='pt', device='cpu') as f:
# Get metadata if available
metadata = f.metadata() if hasattr(f, 'metadata') else {}
for key in f.keys():
tensor = f.get_tensor(key)
# Try to find corresponding LoRA weights
lora_A, lora_B = find_lora_weights(lora_state, key)
if lora_A is not None and lora_B is not None:
lora_type = "Multiplicative" if multiplicative_lora else "Additive"
info_fn(f"Merging {lora_type} LoRA weights for {key}")
shard_merged_count += 1
merged_tensors += 1
# Convert to float32 for computation
original_dtype = tensor.dtype
tensor_f32 = tensor.to(torch.float32)
lora_A_f32 = lora_A.to(torch.float32)
lora_B_f32 = lora_B.to(torch.float32)
if multiplicative_lora:
# Apply Multiplicative-LoRA: W = W + scale * B @ A @ W
tensor_f32 += scale * lora_B_f32 @ lora_A_f32 @ tensor_f32
else:
# Apply standard LoRA: W = W + scale * B @ A
tensor_f32 += scale * lora_B_f32 @ lora_A_f32
# Convert back to original dtype
tensor = tensor_f32.to(original_dtype)
# Clean up intermediate tensors
del tensor_f32, lora_A_f32, lora_B_f32
if torch.cuda.is_available():
torch.cuda.empty_cache()
tensors[key] = tensor
# Save processed shard to temporary file
output_shard_path = os.path.join(temp_shard_dir, f"processed_{shard_filename}")
save_file(tensors, output_shard_path, metadata=metadata)
info_fn(f"Shard {shard_filename}: Merged {shard_merged_count} tensors")
# Upload the processed shard
api.upload_file(
path_or_fileobj=output_shard_path,
path_in_repo=shard_filename,
repo_id=output_repo_name,
repo_type="model"
)
# Clean up this shard's data
del tensors
gc.collect()
finally:
# Always clean up the temporary shard directory
shutil.rmtree(temp_shard_dir, ignore_errors=True)
progress(1.0, desc="Upload completed!")
success_msg = f"β Successfully merged and uploaded model!\nModel URL: https://huggingface.co/{output_repo_name}\nProcessed {total_shards} shards\nMerged {merged_tensors} layers with LoRA weights"
info_fn("Merge completed successfully!")
return success_msg
except Exception as e:
error_msg = f"β Error during merge: {str(e)}"
warning_fn(error_msg)
return error_msg
finally:
# Cleanup LoRA directory
if temp_lora_dir and os.path.exists(temp_lora_dir):
shutil.rmtree(temp_lora_dir, ignore_errors=True)
gc.collect()
INTRODUCTION_TEXT = """
## Memory-Efficient LoRA Merge
This tool merges LoRA (Low-Rank Adaptation) adapters with base models using a memory-efficient approach that processes model files individually, significantly reducing memory requirements compared to traditional methods.
### Key Features
- **Minimal Memory Usage**: Processes one model shard at a time instead of loading the entire model
- **Streaming Processing**: Downloads β Processes β Uploads β Deletes each shard sequentially
- **Automatic Cleanup**: Temporary files are automatically removed after processing
- **Progress Tracking**: Real-time status updates throughout the merge process
- **Advanced Options**: Multiplicative LoRA support
"""
DETAILS_TEXT = """
### How It Works
LoRA enables efficient fine-tuning by adding small adapter weights rather than modifying the entire model. This tool applies the LoRA transformation:
- **Standard Additive-LoRA**: `W_new = W + scale Γ B^T @ A`
- **Multiplicative LoRA**: `W_new = W + scale Γ B^T @ A @ W`
### Memory Efficiency
- **Traditional approach**: Loads entire model (~15GB+ for 7B parameter models)
- **This approach**: Peak usage determined by largest shard size, not total model size
- **Result**: Enables merging of much larger models on limited hardware
### Example Usage
- **Base Model:** `microsoft/DialoGPT-medium`
- **LoRA Adapter:** `username/my-trained-lora`
- **Output Name:** `username/dialogpt-merged`
### Attribution
This tool builds upon excellent work from the community:
- **Base implementation:** [Weyaxi/merge-lora](https://huggingface.co/spaces/Weyaxi/merge-lora)
- **Memory-efficient method:** [qlora-pipe](https://github.com/tdrussell/qlora-pipe/blob/main/tools/merge_lora.py) by tdrussell
"""
with gr.Blocks(title="Memory-Efficient LoRA Merge", theme=gr.themes.Soft()) as demo:
gr.Markdown(INTRODUCTION_TEXT)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Configuration")
hf_token = gr.Textbox(
label="Hugging Face Token",
placeholder="hf_...",
type="password",
info="Token with write access to create repositories"
)
base_model_name = gr.Textbox(
label="Base Model Repository",
placeholder="microsoft/DialoGPT-medium",
info="The original model to merge LoRA into"
)
lora_model_name = gr.Textbox(
label="LoRA Adapter Repository",
placeholder="username/my-lora-adapter",
info="Repository containing adapter_model.safetensors"
)
output_repo_name = gr.Textbox(
label="Output Repository Name",
placeholder="username/my-merged-model",
info="Name for the new merged model repository"
)
gr.Markdown("### Advanced Options")
multiplicative_lora = gr.Checkbox(
label="Multiplicative LoRA",
value=False,
info="Apply a \"multiplicative-LoRA\" instead of a standard \"additive-LoRA\""
)
with gr.Column(scale=1):
gr.Markdown("### Status")
output_text = gr.Textbox(
label="Merge Progress & Results",
lines=20,
interactive=False,
show_copy_button=True
)
with gr.Row():
submit_btn = gr.Button("Start LoRA Merge", variant="primary", size="lg")
submit_btn.click(
fn=merge_lora_efficient,
inputs=[hf_token, base_model_name, lora_model_name, output_repo_name, multiplicative_lora],
outputs=output_text
)
gr.Markdown(DETAILS_TEXT)
demo.queue()
demo.launch(show_error=True) |