import html from typing import Tuple import gradio as gr import numpy as np import random import pandas as pd import matplotlib.pyplot as plt from io import BytesIO, StringIO import base64 import json from gradio_client import Client AA_str = 'ACDEFGHIKLMNPQRSTVWY*-'.lower() AA_TO_CODONS = {"F": ["TTT","TTC"], "L": ["TTA", "TTG", "CTT", "CTC", "CTA", "CTG"], "I": ["ATT", "ATC", "ATA"], "M": ["ATG"], "V": ["GTT", "GTC", "GTA", "GTG"], "S": ["TCT", "TCC", "TCA", "TCG", "AGT", "AGC"], "P": ["CCT", "CCC", "CCA", "CCG"], "T": ["ACT", "ACC", "ACA", "ACG"], "A": ["GCT", "GCC", "GCA", "GCG"], "Y": ["TAT", "TAC"], "H": ["CAT", "CAC"], "Q": ["CAA", "CAG"], "N": ["AAT", "AAC"], "K": ["AAA", "AAG"], "D": ["GAT", "GAC"], "E": ["GAA", "GAG"], "C": ["TGT", "TGC"], "W": ["TGG"], "R": ["CGT", "CGC", "CGA", "CGG", "AGA", "AGG"], "G": ["GGT", "GGC", "GGA", "GGG"], "*": ["TAA", "TAG", "TGA"]} def reverse_dictionary(dictionary): """Return dict of {value: key, ->} Input: dictionary: dict of {key: [value, ->], ->} Output: reverse_dictionary: dict of {value: key, ->} """ reverse_dictionary = {} for key, values in dictionary.items(): for value in values: reverse_dictionary[value] = key return reverse_dictionary CODON_TO_AA = reverse_dictionary(AA_TO_CODONS) # 模拟数据 - 实际使用时需要替换为真实数据 species_data = { "human": {"codon_table": {}, "trna": {}, "codon_usage": {}}, "mouse": {"codon_table": {}, "trna": {}, "codon_usage": {}}, "virus": {"codon_table": {}, "trna": {}, "codon_usage": {}}, "Escherichia coli": {"codon_table": {}, "trna": {}, "codon_usage": {}}, "saccharomyces cerevisiae": {"codon_table": {}, "trna": {}, "codon_usage": {}}, "Pichia": {"codon_table": {}, "trna": {}, "codon_usage": {}}, } # 示例数据 EXAMPLE_PROTEIN = "MSFSRRPKITKSDIVDQISLNIRNNNLKLEKKYIRLVIDAFFEELKGNLCLNNVIEFRSFGTFEVRKRKGRLNARNPQTGEYVKVLDHHVAYFRPGKDLKERVWGIKG" EXAMPLE_CDS = "atgagctttagccgccgcccgaaaattaccaaaagcgatattgtggatcagattagcctg\ aacattcgcaacaacaacctgaaactggaaaaaaaatatattcgcctggtgattgatgcg\ ttttttgaagaactgaaaggcaacctgtgcctgaacaacgtgattgaatttcgcagcttt\ ggcacctttgaagtgcgcaaacgcaaaggccgcctgaacgcgcgcaacccgcagaccggc\ gaatatgtgaaagtgctggatcatcatgtggcgtattttcgcccgggcaaagatctgaaa\ gaacgcgtgtggggcattaaaggc".upper().replace('T', 'U') EXAMPLE_UTR5 = "GAAAAGAGCCCCGGAAAGGAUCUAUCCCUUCCUGUUCUGCUGCACGCAAAAGAACAGCCAAGGGGGAGGCCACC" EXAMPLE_UTR3 = "GCUCGCUUUCUUGCUGUCCAAUUUCUAUUAAAGGUUCCUUUGUUCCCUAAGUCCAACUACUAAACUGGGGGAUAUUAUGAAGGGCCUUGAGCAUCUGGAUUCUGCCUAAUAAAAAACAUUUAUUUUCAUUGCAA" EXAMPLE_MRNA = EXAMPLE_UTR5 + EXAMPLE_CDS + EXAMPLE_UTR3 def find_longest_cds(seq: str) -> Tuple[int, int]: """ 在mRNA序列中查找最长的CDS区域 参数: seq: mRNA序列 返回: (start, end): CDS区域的起始和结束索引 """ seq = seq.upper().replace('U', 'T') best_start = -1 best_end = -1 max_length = 0 # 尝试所有可能的阅读框 for frame in range(3): in_orf = False current_start = -1 for pos in range(frame, len(seq) - 2, 3): codon = seq[pos:pos + 3] # 如果是起始密码子 if codon == "ATG" and not in_orf: in_orf = True current_start = pos # 如果是终止密码子 elif in_orf and codon in ["TAA", "TAG", "TGA"]: orf_length = pos - current_start if orf_length > max_length: max_length = orf_length best_start = current_start best_end = pos + 3 in_orf = False # 处理没有终止密码子的情况 if in_orf: orf_length = len(seq) - current_start if orf_length > max_length: max_length = orf_length best_start = current_start best_end = len(seq) return best_start, best_end def calculate_cds_variants(protein_seq): if not protein_seq: return 0 aa_count = len(protein_seq) return min(2 ** aa_count, 10**15) # 限制上限避免过大数字 def optimize_cds(protein_seq, species, method, status_update): if not protein_seq: status_update("❌ Error: Please enter a protein sequence") return pd.DataFrame(), None status_update("🔄 Optimizing CDS sequences...") # 计算潜在变异数 variants = calculate_cds_variants(protein_seq) # 生成20个优化序列示例 results = [] for i in range(20): seq = ''.join(random.choices("ACGT", k=len(protein_seq)*3)) # 序列截断显示 seq_display = seq[:30] + "..." if len(seq) > 30 else seq gc = random.uniform(0.3, 0.7) trna = random.uniform(0.5, 1.0) usage = random.uniform(0.6, 0.95) mfe = random.uniform(-30, -10) score = gc*0.25 + trna*0.25 + usage*0.25 + (-mfe/40)*0.25 results.append({ "Rank": i+1, "Sequence": seq_display, "Full_Sequence": seq, # 完整序列用于下载 "GC%": f"{gc*100:.1f}%", "tRNA": f"{trna:.3f}", "Usage": f"{usage:.3f}", "MFE": f"{mfe:.1f}", "Score": f"{score:.3f}" }) df = pd.DataFrame(results) display_df = df.drop(columns=['Full_Sequence']) # 显示时不包含完整序列 # 生成图表 fig, ax = plt.subplots(figsize=(10, 6)) scores = [float(x) for x in df["Score"]] bars = ax.bar(range(1, len(scores)+1), scores, color='skyblue', alpha=0.7) ax.set_xlabel("Sequence Rank") ax.set_ylabel("Composite Score") ax.set_title(f"CDS Optimization Results ({method})") ax.grid(True, alpha=0.3) # 高亮前5名 for i in range(min(5, len(bars))): bars[i].set_color('orange') status_update(f"✅ Successfully generated {len(results)} optimized sequences. Potential variants: {variants:,}") return display_df, fig def design_mrna(utr5_file, utr3_file, cds_seq, status_update): if not cds_seq: status_update("❌ Error: Please enter a CDS sequence") return pd.DataFrame() status_update("🔄 Designing mRNA sequences...") # 默认UTR候选序列 default_utr5 = ["GGGAAAUAAGAGAGAAAAGAAGAGUAAGAAGAAAUAUAAGAGCCACCAUGG", "GGGAAAUAAGAGAGAAAAGAAGAGUAAGAAGAAAUAUAAGAGCCACCAUGG"] default_utr3 = ["AAUAAAGCUUUUGCUUUUGUGGUGAAAUUGUUAAUAAACUAUUUUUUUUUU", "AAUAAAGCUUUUGCUUUUGUGGUGAAAUUGUUAAUAAACUAUUUUUUUUUU"] # 生成20个设计结果示例 designs = [] for i in range(20): utr5 = random.choice(default_utr5) utr3 = random.choice(default_utr3) full_seq = utr5 + cds_seq + utr3 # 序列截断显示 full_seq_display = full_seq[:40] + "..." if len(full_seq) > 40 else full_seq mfe = random.uniform(-50, -20) stability = random.uniform(0.6, 0.9) designs.append({ "Rank": i+1, "Design": f"Design_{i+1}", "5'UTR": utr5[:15] + "..." if len(utr5) > 15 else utr5, "3'UTR": utr3[:15] + "..." if len(utr3) > 15 else utr3, "MFE": f"{mfe:.1f}", "Stability": f"{stability:.3f}", "Sequence": full_seq_display, "Full_Sequence": full_seq # 完整序列用于下载 }) df = pd.DataFrame(designs) display_df = df.drop(columns=['Full_Sequence']) # 显示时不包含完整序列 status_update(f"✅ Successfully designed {len(designs)} mRNA sequences") return display_df def download_cds_results(results_df): if results_df is None or len(results_df) == 0: return None # 重新添加完整序列用于下载 download_data = [] for idx, row in results_df.iterrows(): download_data.append({ "Rank": row["Rank"], "Full_Sequence": ''.join(random.choices("ACGT", k=150)), # 模拟完整序列 "GC%": row["GC%"], "tRNA": row["tRNA"], "Usage": row["Usage"], "MFE": row["MFE"], "Score": row["Score"] }) download_df = pd.DataFrame(download_data) # 保存为CSV csv_buffer = StringIO() download_df.to_csv(csv_buffer, index=False) csv_content = csv_buffer.getvalue() # 创建临时文件 filename = "cds_optimization_results.csv" with open(filename, 'w') as f: f.write(csv_content) return filename def download_mrna_results(results_df): if results_df is None or len(results_df) == 0: return None # 重新添加完整序列用于下载 download_data = [] for idx, row in results_df.iterrows(): download_data.append({ "Rank": row["Rank"], "Design": row["Design"], "Full_Sequence": ''.join(random.choices("ACGT", k=300)), # 模拟完整序列 "5'UTR": row["5'UTR"], "3'UTR": row["3'UTR"], "MFE": row["MFE"], "Stability": row["Stability"] }) download_df = pd.DataFrame(download_data) # 保存为CSV csv_buffer = StringIO() download_df.to_csv(csv_buffer, index=False) csv_content = csv_buffer.getvalue() # 创建临时文件 filename = "mrna_design_results.csv" with open(filename, 'w') as f: f.write(csv_content) return filename def validate_dna_sequence(seq): if len(set(seq)-set('ACGTU'))>0: return False, str(set(seq)-set('ACGTU')) return True, "" def translate_cds(cds_seq,repeat=1): cds_seq = cds_seq.upper().replace('U', 'T') amino_acid_list = [] for i in range(0, len(cds_seq), 3): codon = cds_seq[i:i + 3] amino_acid_list.append(CODON_TO_AA.get(codon, '-') * repeat) amino_acid_seq = ''.join(amino_acid_list) return amino_acid_seq class MaoTaoWeb: def __init__(self): self.app = self.design_app() def design_app(self): # 创建Gradio界面 with gr.Blocks(title="Vaccine Designer", theme=gr.themes.Soft()) as app: gr.Markdown("# 🧬 Vaccine Design Platform") gr.Markdown("*Academic Collaboration Platform for mRNA Vaccine Design*") # 全局状态显示 self.status_display = gr.Textbox( label="Status", value="Ready to start", interactive=False, container=True ) # 创建各个标签页 self.mrna_annotation_tab() self.cds_optimization_tab() self.mrna_design_tab() self.rpcontact_tab() self.resources_tab() return app def mrna_annotation_tab(self): with gr.Tab("🔬 mRNA Annotation"): gr.Markdown("## mRNA Sequence Annotation") with gr.Row(): with gr.Column(scale=3): mrna_input = gr.Textbox( label="mRNA Sequence", placeholder="Enter mRNA sequence here...", lines=5, max_lines=10 ) with gr.Column(scale=1): start_position = gr.Number( label="CDS Start", value=-1, interactive=True, precision=0, ) stop_position = gr.Number( label="CDS End", value=-1, interactive=True, precision=0, ) with gr.Row(): example_btn = gr.Button("Load Example", variant="secondary") annotate_btn = gr.Button("Annotate Regions", variant="primary") with gr.Row(): annotation_output = gr.HTML( label="Sequence Regions", value="