|
import spaces |
|
import os |
|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
import gradio as gr |
|
from gradio_imageslider import ImageSlider |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
weight_dtype = torch.float32 |
|
|
|
|
|
from DAI.pipeline_all import DAIPipeline |
|
from DAI.controlnetvae import ControlNetVAEModel |
|
from DAI.decoder import CustomAutoencoderKL |
|
from diffusers import AutoencoderKL, UNet2DConditionModel |
|
from transformers import CLIPTextModel, AutoTokenizer |
|
|
|
pretrained_model_name_or_path = "sjtu-deepvision/dereflection-any-image-v0" |
|
pretrained_model_name_or_path2 = "stabilityai/stable-diffusion-2-1" |
|
|
|
|
|
controlnet = ControlNetVAEModel.from_pretrained(pretrained_model_name_or_path, subfolder="controlnet", torch_dtype=weight_dtype).to(device) |
|
unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder="unet", torch_dtype=weight_dtype).to(device) |
|
vae_2 = CustomAutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae_2", torch_dtype=weight_dtype).to(device) |
|
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path2, subfolder="vae").to(device) |
|
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_name_or_path2, subfolder="text_encoder").to(device) |
|
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path2, subfolder="tokenizer", use_fast=False) |
|
|
|
|
|
pipe = DAIPipeline( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
controlnet=controlnet, |
|
safety_checker=None, |
|
scheduler=None, |
|
feature_extractor=None, |
|
t_start=0, |
|
).to(device) |
|
|
|
|
|
@spaces.GPU |
|
def process_image(input_image): |
|
|
|
input_image = Image.fromarray(input_image) |
|
|
|
|
|
pipe_out = pipe( |
|
image=input_image, |
|
prompt="remove glass reflection", |
|
vae_2=vae_2, |
|
processing_resolution=None, |
|
) |
|
|
|
|
|
processed_frame = (pipe_out.prediction.clip(-1, 1) + 1) / 2 |
|
processed_frame = (processed_frame[0] * 255).astype(np.uint8) |
|
processed_frame = Image.fromarray(processed_frame) |
|
|
|
|
|
return input_image, processed_frame |
|
|
|
|
|
def create_gradio_interface(): |
|
|
|
example_images = [ |
|
os.path.join("files", "image", f"{i}.png") for i in range(1, 9) |
|
] |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Dereflection Any Image") |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image(label="Input Image", type="numpy") |
|
submit_btn = gr.Button("Remove Reflection", variant="primary") |
|
with gr.Column(): |
|
|
|
output_slider = ImageSlider( |
|
label="Before & After", |
|
show_download_button=True, |
|
show_share_button=True, |
|
) |
|
|
|
|
|
gr.Examples( |
|
examples=example_images, |
|
inputs=input_image, |
|
outputs=output_slider, |
|
fn=process_image, |
|
cache_examples=False, |
|
label="Example Images", |
|
) |
|
|
|
|
|
submit_btn.click( |
|
fn=process_image, |
|
inputs=input_image, |
|
outputs=output_slider, |
|
) |
|
|
|
return demo |
|
|
|
|
|
def main(): |
|
demo = create_gradio_interface() |
|
demo.queue().launch(show_api=False) |
|
|
|
if __name__ == "__main__": |
|
main() |