Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import json
|
3 |
+
import base64
|
4 |
+
import requests
|
5 |
+
import torch
|
6 |
+
import nest_asyncio
|
7 |
+
from fastapi import HTTPException
|
8 |
+
from pydantic import BaseModel
|
9 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
10 |
+
from sentence_transformers import SentenceTransformer, models
|
11 |
+
import gradio as gr
|
12 |
+
|
13 |
+
|
14 |
+
# Apply nest_asyncio to allow async operations in the notebook/Spaces
|
15 |
+
nest_asyncio.apply()
|
16 |
+
|
17 |
+
import os
|
18 |
+
|
19 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
20 |
+
GITHUB_TOKEN = os.environ.get("GITHUB_TOKEN")
|
21 |
+
|
22 |
+
|
23 |
+
############################################
|
24 |
+
# GitHub API Functions
|
25 |
+
############################################
|
26 |
+
|
27 |
+
def extract_repo_info(github_url: str):
|
28 |
+
pattern = r"github\.com/([^/]+)/([^/]+)"
|
29 |
+
match = re.search(pattern, github_url)
|
30 |
+
if match:
|
31 |
+
owner = match.group(1)
|
32 |
+
repo = match.group(2).replace('.git', '')
|
33 |
+
return owner, repo
|
34 |
+
else:
|
35 |
+
raise ValueError("Invalid GitHub URL provided.")
|
36 |
+
|
37 |
+
def get_repo_metadata(owner: str, repo: str):
|
38 |
+
headers = {'Authorization': f'token {GITHUB_TOKEN}'}
|
39 |
+
repo_url = f"https://api.github.com/repos/{owner}/{repo}"
|
40 |
+
response = requests.get(repo_url, headers=headers)
|
41 |
+
return response.json()
|
42 |
+
|
43 |
+
def get_repo_tree(owner: str, repo: str, branch: str):
|
44 |
+
headers = {'Authorization': f'token {GITHUB_TOKEN}'}
|
45 |
+
tree_url = f"https://api.github.com/repos/{owner}/{repo}/git/trees/{branch}?recursive=1"
|
46 |
+
response = requests.get(tree_url, headers=headers)
|
47 |
+
return response.json()
|
48 |
+
|
49 |
+
def get_file_content(owner: str, repo: str, file_path: str):
|
50 |
+
headers = {'Authorization': f'token {GITHUB_TOKEN}'}
|
51 |
+
content_url = f"https://api.github.com/repos/{owner}/{repo}/contents/{file_path}"
|
52 |
+
response = requests.get(content_url, headers=headers)
|
53 |
+
data = response.json()
|
54 |
+
if 'content' in data:
|
55 |
+
return base64.b64decode(data['content']).decode('utf-8')
|
56 |
+
else:
|
57 |
+
return None
|
58 |
+
|
59 |
+
############################################
|
60 |
+
# Embedding Functions
|
61 |
+
############################################
|
62 |
+
|
63 |
+
def preprocess_text(text: str) -> str:
|
64 |
+
cleaned_text = text.strip()
|
65 |
+
cleaned_text = re.sub(r'\s+', ' ', cleaned_text)
|
66 |
+
return cleaned_text
|
67 |
+
|
68 |
+
def load_embedding_model(model_name: str = 'huggingface/CodeBERTa-small-v1') -> SentenceTransformer:
|
69 |
+
transformer_model = models.Transformer(model_name)
|
70 |
+
pooling_model = models.Pooling(transformer_model.get_word_embedding_dimension(),
|
71 |
+
pooling_mode_mean_tokens=True)
|
72 |
+
model = SentenceTransformer(modules=[transformer_model, pooling_model])
|
73 |
+
return model
|
74 |
+
|
75 |
+
def generate_embedding(text: str, model_name: str = 'huggingface/CodeBERTa-small-v1') -> list:
|
76 |
+
processed_text = preprocess_text(text)
|
77 |
+
model = load_embedding_model(model_name)
|
78 |
+
embedding = model.encode(processed_text)
|
79 |
+
return embedding
|
80 |
+
|
81 |
+
############################################
|
82 |
+
# LLM Integration Functions
|
83 |
+
############################################
|
84 |
+
|
85 |
+
def is_detailed_query(query: str) -> bool:
|
86 |
+
keywords = ["detail", "detailed", "thorough", "in depth", "comprehensive", "extensive"]
|
87 |
+
return any(keyword in query.lower() for keyword in keywords)
|
88 |
+
|
89 |
+
def generate_prompt(query: str, context_snippets: list) -> str:
|
90 |
+
context = "\n\n".join(context_snippets)
|
91 |
+
if is_detailed_query(query):
|
92 |
+
instruction = "Provide an extremely detailed and thorough explanation of at least 500 words."
|
93 |
+
else:
|
94 |
+
instruction = "Answer concisely."
|
95 |
+
|
96 |
+
prompt = (
|
97 |
+
f"Below is some context from a GitHub repository:\n\n"
|
98 |
+
f"{context}\n\n"
|
99 |
+
f"Based on the above, {instruction}\n{query}\n"
|
100 |
+
f"Answer:"
|
101 |
+
)
|
102 |
+
return prompt
|
103 |
+
|
104 |
+
def get_llm_response(prompt: str, model_name: str = "meta-llama/Llama-2-7b-chat-hf", max_new_tokens: int = None) -> str:
|
105 |
+
if max_new_tokens is None:
|
106 |
+
max_new_tokens = 1024 if is_detailed_query(prompt) else 256
|
107 |
+
|
108 |
+
torch.cuda.empty_cache()
|
109 |
+
|
110 |
+
# Load tokenizer and model with authentication using the 'token' parameter.
|
111 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, token=HF_TOKEN)
|
112 |
+
model = AutoModelForCausalLM.from_pretrained(
|
113 |
+
model_name,
|
114 |
+
device_map="auto",
|
115 |
+
use_safetensors=False,
|
116 |
+
trust_remote_code=True,
|
117 |
+
torch_dtype=torch.float16,
|
118 |
+
token=HF_TOKEN
|
119 |
+
)
|
120 |
+
|
121 |
+
text_gen = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
122 |
+
outputs = text_gen(prompt, max_new_tokens=max_new_tokens, do_sample=True, temperature=0.7)
|
123 |
+
full_response = outputs[0]['generated_text']
|
124 |
+
|
125 |
+
marker = "Answer:"
|
126 |
+
if marker in full_response:
|
127 |
+
answer = full_response.split(marker, 1)[1].strip()
|
128 |
+
else:
|
129 |
+
answer = full_response.strip()
|
130 |
+
|
131 |
+
return answer
|
132 |
+
|
133 |
+
############################################
|
134 |
+
# Gradio Interface Functions
|
135 |
+
############################################
|
136 |
+
|
137 |
+
def load_repo_contents(github_url: str):
|
138 |
+
try:
|
139 |
+
owner, repo = extract_repo_info(github_url)
|
140 |
+
except Exception as e:
|
141 |
+
return f"Error: {str(e)}"
|
142 |
+
repo_data = get_repo_metadata(owner, repo)
|
143 |
+
default_branch = repo_data.get("default_branch", "main")
|
144 |
+
tree_data = get_repo_tree(owner, repo, default_branch)
|
145 |
+
if "tree" not in tree_data:
|
146 |
+
return "Error: Could not fetch repository tree."
|
147 |
+
file_list = [item["path"] for item in tree_data["tree"] if item["type"] == "blob"]
|
148 |
+
return file_list
|
149 |
+
|
150 |
+
def get_file_content_for_choice(github_url: str, file_choice: int):
|
151 |
+
try:
|
152 |
+
owner, repo = extract_repo_info(github_url)
|
153 |
+
except Exception as e:
|
154 |
+
return str(e)
|
155 |
+
repo_data = get_repo_metadata(owner, repo)
|
156 |
+
default_branch = repo_data.get("default_branch", "main")
|
157 |
+
tree_data = get_repo_tree(owner, repo, default_branch)
|
158 |
+
if "tree" not in tree_data:
|
159 |
+
return "Error: Could not fetch repository tree."
|
160 |
+
file_list = [item["path"] for item in tree_data["tree"] if item["type"] == "blob"]
|
161 |
+
if file_choice < 1 or file_choice > len(file_list):
|
162 |
+
return "Error: Invalid file choice."
|
163 |
+
selected_file = file_list[file_choice - 1]
|
164 |
+
content = get_file_content(owner, repo, selected_file)
|
165 |
+
return content, selected_file
|
166 |
+
|
167 |
+
def chat_with_file(github_url: str, file_choice: int, user_query: str):
|
168 |
+
result = get_file_content_for_choice(github_url, file_choice)
|
169 |
+
if isinstance(result, str):
|
170 |
+
return result # Error message
|
171 |
+
file_content, selected_file = result
|
172 |
+
preprocessed = preprocess_text(file_content)
|
173 |
+
context_snippet = preprocessed[:1000] # use first 1000 characters as context
|
174 |
+
prompt = generate_prompt(user_query, [context_snippet])
|
175 |
+
llm_response = get_llm_response(prompt)
|
176 |
+
return f"File: {selected_file}\n\nLLM Response:\n{llm_response}"
|
177 |
+
|
178 |
+
############################################
|
179 |
+
# Gradio Interface Setup
|
180 |
+
############################################
|
181 |
+
|
182 |
+
with gr.Blocks() as demo:
|
183 |
+
gr.Markdown("# RepoChat - Chat with Repository Files")
|
184 |
+
|
185 |
+
with gr.Row():
|
186 |
+
with gr.Column(scale=1):
|
187 |
+
gr.Markdown("### Repository Information")
|
188 |
+
github_url_input = gr.Textbox(label="GitHub Repository URL", placeholder="https://github.com/username/repository")
|
189 |
+
load_repo_btn = gr.Button("Load Repository Contents")
|
190 |
+
file_dropdown = gr.Dropdown(label="Select a File", interactive=True)
|
191 |
+
repo_content_output = gr.Textbox(label="File Content", interactive=False, lines=10)
|
192 |
+
with gr.Column(scale=2):
|
193 |
+
gr.Markdown("### Chat Interface")
|
194 |
+
chat_query_input = gr.Textbox(label="Your Query", placeholder="Type your query here")
|
195 |
+
chat_output = gr.Textbox(label="Chatbot Response", interactive=False, lines=10)
|
196 |
+
chat_btn = gr.Button("Send Query")
|
197 |
+
|
198 |
+
# When clicking "Load Repository Contents", update file dropdown
|
199 |
+
def update_file_dropdown(github_url):
|
200 |
+
files = load_repo_contents(github_url)
|
201 |
+
return files
|
202 |
+
|
203 |
+
load_repo_btn.click(fn=update_file_dropdown, inputs=[github_url_input], outputs=[file_dropdown])
|
204 |
+
|
205 |
+
# When file selection changes, update file content display
|
206 |
+
def update_repo_content(github_url, file_choice):
|
207 |
+
if not file_choice:
|
208 |
+
return "No file selected."
|
209 |
+
try:
|
210 |
+
file_index = int(file_choice)
|
211 |
+
except:
|
212 |
+
file_index = 1
|
213 |
+
content, _ = get_file_content_for_choice(github_url, file_index)
|
214 |
+
return content
|
215 |
+
|
216 |
+
file_dropdown.change(fn=update_repo_content, inputs=[github_url_input, file_dropdown], outputs=[repo_content_output])
|
217 |
+
|
218 |
+
# When sending a chat query, process it
|
219 |
+
def process_chat(github_url, file_choice, chat_query):
|
220 |
+
return chat_with_file(github_url, int(file_choice), chat_query)
|
221 |
+
|
222 |
+
chat_btn.click(fn=process_chat, inputs=[github_url_input, file_dropdown, chat_query_input], outputs=[chat_output])
|
223 |
+
|
224 |
+
demo.launch()
|