Spaces:
Sleeping
Sleeping
File size: 36,116 Bytes
f65fe85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 |
;;; Guile Emacs Lisp
;; Copyright (C) 2009, 2010 Free Software Foundation, Inc.
;; This program is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
;;
;; This program is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with this program; see the file COPYING. If not, write to
;; the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
;; Boston, MA 02111-1307, USA.
;;; Code:
(define-module (language elisp compile-tree-il)
#:use-module (language elisp bindings)
#:use-module (language elisp runtime)
#:use-module (language tree-il)
#:use-module (system base pmatch)
#:use-module (system base compile)
#:use-module (srfi srfi-1)
#:use-module (srfi srfi-8)
#:use-module (srfi srfi-11)
#:use-module (srfi srfi-26)
#:export (compile-tree-il
compile-progn
compile-if
compile-defconst
compile-defvar
compile-setq
compile-let
compile-lexical-let
compile-flet
compile-let*
compile-lexical-let*
compile-flet*
compile-without-void-checks
compile-with-always-lexical
compile-guile-ref
compile-guile-primitive
compile-while
compile-function
compile-defmacro
compile-defun
#{compile-`}#
compile-quote))
;;; Certain common parameters (like the bindings data structure or
;;; compiler options) are not always passed around but accessed using
;;; fluids to simulate dynamic binding (hey, this is about elisp).
;;; The bindings data structure to keep track of symbol binding related
;;; data.
(define bindings-data (make-fluid))
;;; Store for which symbols (or all/none) void checks are disabled.
(define disable-void-check (make-fluid))
;;; Store which symbols (or all/none) should always be bound lexically,
;;; even with ordinary let and as lambda arguments.
(define always-lexical (make-fluid))
;;; Find the source properties of some parsed expression if there are
;;; any associated with it.
(define (location x)
(and (pair? x)
(let ((props (source-properties x)))
(and (not (null? props))
props))))
;;; Values to use for Elisp's nil and t.
(define (nil-value loc)
(make-const loc (@ (language elisp runtime) nil-value)))
(define (t-value loc)
(make-const loc (@ (language elisp runtime) t-value)))
;;; Modules that contain the value and function slot bindings.
(define runtime '(language elisp runtime))
(define value-slot (@ (language elisp runtime) value-slot-module))
(define function-slot (@ (language elisp runtime) function-slot-module))
;;; The backquoting works the same as quasiquotes in Scheme, but the
;;; forms are named differently; to make easy adaptions, we define these
;;; predicates checking for a symbol being the car of an
;;; unquote/unquote-splicing/backquote form.
(define (unquote? sym)
(and (symbol? sym) (eq? sym '#{,}#)))
(define (unquote-splicing? sym)
(and (symbol? sym) (eq? sym '#{,@}#)))
;;; Build a call to a primitive procedure nicely.
(define (call-primitive loc sym . args)
(make-application loc (make-primitive-ref loc sym) args))
;;; Error reporting routine for syntax/compilation problems or build
;;; code for a runtime-error output.
(define (report-error loc . args)
(apply error args))
(define (runtime-error loc msg . args)
(make-application loc
(make-primitive-ref loc 'error)
(cons (make-const loc msg) args)))
;;; Generate code to ensure a global symbol is there for further use of
;;; a given symbol. In general during the compilation, those needed are
;;; only tracked with the bindings data structure. Afterwards, however,
;;; for all those needed symbols the globals are really generated with
;;; this routine.
(define (generate-ensure-global loc sym module)
(make-application loc
(make-module-ref loc runtime 'ensure-fluid! #t)
(list (make-const loc module)
(make-const loc sym))))
(define (ensuring-globals loc bindings body)
(make-sequence
loc
`(,@(map-globals-needed (fluid-ref bindings)
(lambda (mod sym)
(generate-ensure-global loc sym mod)))
,body)))
;;; Build a construct that establishes dynamic bindings for certain
;;; variables. We may want to choose between binding with fluids and
;;; with-fluids* and using just ordinary module symbols and
;;; setting/reverting their values with a dynamic-wind.
(define (let-dynamic loc syms module vals body)
(call-primitive
loc
'with-fluids*
(make-application loc
(make-primitive-ref loc 'list)
(map (lambda (sym)
(make-module-ref loc module sym #t))
syms))
(make-application loc (make-primitive-ref loc 'list) vals)
(make-lambda loc
'()
(make-lambda-case #f '() #f #f #f '() '() body #f))))
;;; Handle access to a variable (reference/setting) correctly depending
;;; on whether it is currently lexically or dynamically bound. lexical
;;; access is done only for references to the value-slot module!
(define (access-variable loc
sym
module
handle-global
handle-lexical
handle-dynamic)
(let ((lexical (get-lexical-binding (fluid-ref bindings-data) sym)))
(cond
(lexical (handle-lexical lexical))
((equal? module function-slot) (handle-global))
(else (handle-dynamic)))))
;;; Generate code to reference a variable. For references in the
;;; value-slot module, we may want to generate a lexical reference
;;; instead if the variable has a lexical binding.
(define (reference-variable loc sym module)
(access-variable
loc
sym
module
(lambda () (make-module-ref loc module sym #t))
(lambda (lexical) (make-lexical-ref loc lexical lexical))
(lambda ()
(mark-global-needed! (fluid-ref bindings-data) sym module)
(call-primitive loc
'fluid-ref
(make-module-ref loc module sym #t)))))
;;; Generate code to set a variable. Just as with reference-variable, in
;;; case of a reference to value-slot, we want to generate a lexical set
;;; when the variable has a lexical binding.
(define (set-variable! loc sym module value)
(access-variable
loc
sym
module
(lambda ()
(make-application
loc
(make-module-ref loc runtime 'set-variable! #t)
(list (make-const loc module) (make-const loc sym) value)))
(lambda (lexical) (make-lexical-set loc lexical lexical value))
(lambda ()
(mark-global-needed! (fluid-ref bindings-data) sym module)
(call-primitive loc
'fluid-set!
(make-module-ref loc module sym #t)
value))))
;;; Process the bindings part of a let or let* expression; that is,
;;; check for correctness and bring it to the form ((sym1 . val1) (sym2
;;; . val2) ...).
(define (process-let-bindings loc bindings)
(map
(lambda (b)
(if (symbol? b)
(cons b 'nil)
(if (or (not (list? b))
(not (= (length b) 2)))
(report-error
loc
"expected symbol or list of 2 elements in let")
(if (not (symbol? (car b)))
(report-error loc "expected symbol in let")
(cons (car b) (cadr b))))))
bindings))
;;; Split the let bindings into a list to be done lexically and one
;;; dynamically. A symbol will be bound lexically if and only if: We're
;;; processing a lexical-let (i.e. module is 'lexical), OR we're
;;; processing a value-slot binding AND the symbol is already lexically
;;; bound or is always lexical, OR we're processing a function-slot
;;; binding.
(define (bind-lexically? sym module)
(or (eq? module 'lexical)
(eq? module function-slot)
(and (equal? module value-slot)
(let ((always (fluid-ref always-lexical)))
(or (eq? always 'all)
(memq sym always)
(get-lexical-binding (fluid-ref bindings-data) sym))))))
(define (split-let-bindings bindings module)
(let iterate ((tail bindings)
(lexical '())
(dynamic '()))
(if (null? tail)
(values (reverse lexical) (reverse dynamic))
(if (bind-lexically? (caar tail) module)
(iterate (cdr tail) (cons (car tail) lexical) dynamic)
(iterate (cdr tail) lexical (cons (car tail) dynamic))))))
;;; Compile let and let* expressions. The code here is used both for
;;; let/let* and flet/flet*, just with a different bindings module.
;;;
;;; A special module value 'lexical means that we're doing a lexical-let
;;; instead and the bindings should not be saved to globals at all but
;;; be done with the lexical framework instead.
;;; Let is done with a single call to let-dynamic binding them locally
;;; to new values all "at once". If there is at least one variable to
;;; bind lexically among the bindings, we first do a let for all of them
;;; to evaluate all values before any bindings take place, and then call
;;; let-dynamic for the variables to bind dynamically.
(define (generate-let loc module bindings body)
(let ((bind (process-let-bindings loc bindings)))
(call-with-values
(lambda () (split-let-bindings bind module))
(lambda (lexical dynamic)
(for-each (lambda (sym)
(mark-global-needed! (fluid-ref bindings-data)
sym
module))
(map car dynamic))
(let ((make-values (lambda (for)
(map (lambda (el) (compile-expr (cdr el)))
for)))
(make-body (lambda ()
(make-sequence loc (map compile-expr body)))))
(if (null? lexical)
(let-dynamic loc (map car dynamic) module
(make-values dynamic) (make-body))
(let* ((lexical-syms (map (lambda (el) (gensym)) lexical))
(dynamic-syms (map (lambda (el) (gensym)) dynamic))
(all-syms (append lexical-syms dynamic-syms))
(vals (append (make-values lexical)
(make-values dynamic))))
(make-let loc
all-syms
all-syms
vals
(with-lexical-bindings
(fluid-ref bindings-data)
(map car lexical) lexical-syms
(lambda ()
(if (null? dynamic)
(make-body)
(let-dynamic loc
(map car dynamic)
module
(map
(lambda (sym)
(make-lexical-ref loc
sym
sym))
dynamic-syms)
(make-body)))))))))))))
;;; Let* is compiled to a cascaded set of "small lets" for each binding
;;; in turn so that each one already sees the preceding bindings.
(define (generate-let* loc module bindings body)
(let ((bind (process-let-bindings loc bindings)))
(begin
(for-each (lambda (sym)
(if (not (bind-lexically? sym module))
(mark-global-needed! (fluid-ref bindings-data)
sym
module)))
(map car bind))
(let iterate ((tail bind))
(if (null? tail)
(make-sequence loc (map compile-expr body))
(let ((sym (caar tail))
(value (compile-expr (cdar tail))))
(if (bind-lexically? sym module)
(let ((target (gensym)))
(make-let loc
`(,target)
`(,target)
`(,value)
(with-lexical-bindings
(fluid-ref bindings-data)
`(,sym)
`(,target)
(lambda () (iterate (cdr tail))))))
(let-dynamic loc
`(,(caar tail))
module
`(,value)
(iterate (cdr tail))))))))))
;;; Split the argument list of a lambda expression into required,
;;; optional and rest arguments and also check it is actually valid.
;;; Additionally, we create a list of all "local variables" (that is,
;;; required, optional and rest arguments together) and also this one
;;; split into those to be bound lexically and dynamically. Returned is
;;; as multiple values: required optional rest lexical dynamic
(define (bind-arg-lexical? arg)
(let ((always (fluid-ref always-lexical)))
(or (eq? always 'all)
(memq arg always))))
(define (split-lambda-arguments loc args)
(let iterate ((tail args)
(mode 'required)
(required '())
(optional '())
(lexical '())
(dynamic '()))
(cond
((null? tail)
(let ((final-required (reverse required))
(final-optional (reverse optional))
(final-lexical (reverse lexical))
(final-dynamic (reverse dynamic)))
(values final-required
final-optional
#f
final-lexical
final-dynamic)))
((and (eq? mode 'required)
(eq? (car tail) '&optional))
(iterate (cdr tail) 'optional required optional lexical dynamic))
((eq? (car tail) '&rest)
(if (or (null? (cdr tail))
(not (null? (cddr tail))))
(report-error loc "expected exactly one symbol after &rest")
(let* ((rest (cadr tail))
(rest-lexical (bind-arg-lexical? rest))
(final-required (reverse required))
(final-optional (reverse optional))
(final-lexical (reverse (if rest-lexical
(cons rest lexical)
lexical)))
(final-dynamic (reverse (if rest-lexical
dynamic
(cons rest dynamic)))))
(values final-required
final-optional
rest
final-lexical
final-dynamic))))
(else
(if (not (symbol? (car tail)))
(report-error loc
"expected symbol in argument list, got"
(car tail))
(let* ((arg (car tail))
(bind-lexical (bind-arg-lexical? arg))
(new-lexical (if bind-lexical
(cons arg lexical)
lexical))
(new-dynamic (if bind-lexical
dynamic
(cons arg dynamic))))
(case mode
((required) (iterate (cdr tail) mode
(cons arg required) optional
new-lexical new-dynamic))
((optional) (iterate (cdr tail) mode
required (cons arg optional)
new-lexical new-dynamic))
(else
(error "invalid mode in split-lambda-arguments"
mode)))))))))
;;; Compile a lambda expression. One thing we have to be aware of is
;;; that lambda arguments are usually dynamically bound, even when a
;;; lexical binding is intact for a symbol. For symbols that are marked
;;; as 'always lexical,' however, we lexically bind here as well, and
;;; thus we get them out of the let-dynamic call and register a lexical
;;; binding for them (the lexical target variable is already there,
;;; namely the real lambda argument from TreeIL).
(define (compile-lambda loc args body)
(if (not (list? args))
(report-error loc "expected list for argument-list" args))
(if (null? body)
(report-error loc "function body must not be empty"))
(receive (required optional rest lexical dynamic)
(split-lambda-arguments loc args)
(define (process-args args)
(define (find-pairs pairs filter)
(lset-intersection (lambda (name+sym x)
(eq? (car name+sym) x))
pairs
filter))
(let* ((syms (map (lambda (x) (gensym)) args))
(pairs (map cons args syms))
(lexical-pairs (find-pairs pairs lexical))
(dynamic-pairs (find-pairs pairs dynamic)))
(values syms pairs lexical-pairs dynamic-pairs)))
(let*-values (((required-syms
required-pairs
required-lex-pairs
required-dyn-pairs)
(process-args required))
((optional-syms
optional-pairs
optional-lex-pairs
optional-dyn-pairs)
(process-args optional))
((rest-syms rest-pairs rest-lex-pairs rest-dyn-pairs)
(process-args (if rest (list rest) '())))
((the-rest-sym) (if rest (car rest-syms) #f))
((all-syms) (append required-syms
optional-syms
rest-syms))
((all-lex-pairs) (append required-lex-pairs
optional-lex-pairs
rest-lex-pairs))
((all-dyn-pairs) (append required-dyn-pairs
optional-dyn-pairs
rest-dyn-pairs)))
(for-each (lambda (sym)
(mark-global-needed! (fluid-ref bindings-data)
sym
value-slot))
dynamic)
(with-dynamic-bindings
(fluid-ref bindings-data)
dynamic
(lambda ()
(with-lexical-bindings
(fluid-ref bindings-data)
(map car all-lex-pairs)
(map cdr all-lex-pairs)
(lambda ()
(make-lambda
loc
'()
(make-lambda-case
#f
required
optional
rest
#f
(map (lambda (x) (nil-value loc)) optional)
all-syms
(let ((compiled-body
(make-sequence loc (map compile-expr body))))
(make-sequence
loc
(list
(if rest
(make-conditional
loc
(call-primitive loc
'null?
(make-lexical-ref loc
rest
the-rest-sym))
(make-lexical-set loc
rest
the-rest-sym
(nil-value loc))
(make-void loc))
(make-void loc))
(if (null? dynamic)
compiled-body
(let-dynamic loc
dynamic
value-slot
(map (lambda (name-sym)
(make-lexical-ref
loc
(car name-sym)
(cdr name-sym)))
all-dyn-pairs)
compiled-body)))))
#f)))))))))
;;; Handle the common part of defconst and defvar, that is, checking for
;;; a correct doc string and arguments as well as maybe in the future
;;; handling the docstring somehow.
(define (handle-var-def loc sym doc)
(cond
((not (symbol? sym)) (report-error loc "expected symbol, got" sym))
((> (length doc) 1) (report-error loc "too many arguments to defvar"))
((and (not (null? doc)) (not (string? (car doc))))
(report-error loc "expected string as third argument of defvar, got"
(car doc)))
;; TODO: Handle doc string if present.
(else #t)))
;;; Handle macro and special operator bindings.
(define (find-operator sym type)
(and
(symbol? sym)
(module-defined? (resolve-interface function-slot) sym)
(let* ((op (module-ref (resolve-module function-slot) sym))
(op (if (fluid? op) (fluid-ref op) op)))
(if (and (pair? op) (eq? (car op) type))
(cdr op)
#f))))
;;; See if a (backquoted) expression contains any unquotes.
(define (contains-unquotes? expr)
(if (pair? expr)
(if (or (unquote? (car expr)) (unquote-splicing? (car expr)))
#t
(or (contains-unquotes? (car expr))
(contains-unquotes? (cdr expr))))
#f))
;;; Process a backquoted expression by building up the needed
;;; cons/append calls. For splicing, it is assumed that the expression
;;; spliced in evaluates to a list. The emacs manual does not really
;;; state either it has to or what to do if it does not, but Scheme
;;; explicitly forbids it and this seems reasonable also for elisp.
(define (unquote-cell? expr)
(and (list? expr) (= (length expr) 2) (unquote? (car expr))))
(define (unquote-splicing-cell? expr)
(and (list? expr) (= (length expr) 2) (unquote-splicing? (car expr))))
(define (process-backquote loc expr)
(if (contains-unquotes? expr)
(if (pair? expr)
(if (or (unquote-cell? expr) (unquote-splicing-cell? expr))
(compile-expr (cadr expr))
(let* ((head (car expr))
(processed-tail (process-backquote loc (cdr expr)))
(head-is-list-2 (and (list? head)
(= (length head) 2)))
(head-unquote (and head-is-list-2
(unquote? (car head))))
(head-unquote-splicing (and head-is-list-2
(unquote-splicing?
(car head)))))
(if head-unquote-splicing
(call-primitive loc
'append
(compile-expr (cadr head))
processed-tail)
(call-primitive loc 'cons
(if head-unquote
(compile-expr (cadr head))
(process-backquote loc head))
processed-tail))))
(report-error loc
"non-pair expression contains unquotes"
expr))
(make-const loc expr)))
;;; Temporarily update a list of symbols that are handled specially
;;; (disabled void check or always lexical) for compiling body. We need
;;; to handle special cases for already all / set to all and the like.
(define (with-added-symbols loc fluid syms body)
(if (null? body)
(report-error loc "symbol-list construct has empty body"))
(if (not (or (eq? syms 'all)
(and (list? syms) (and-map symbol? syms))))
(report-error loc "invalid symbol list" syms))
(let ((old (fluid-ref fluid))
(make-body (lambda ()
(make-sequence loc (map compile-expr body)))))
(if (eq? old 'all)
(make-body)
(let ((new (if (eq? syms 'all)
'all
(append syms old))))
(with-fluids ((fluid new))
(make-body))))))
;;; Special operators
(defspecial progn (loc args)
(make-sequence loc (map compile-expr args)))
(defspecial if (loc args)
(pmatch args
((,cond ,then . ,else)
(make-conditional loc
(compile-expr cond)
(compile-expr then)
(if (null? else)
(nil-value loc)
(make-sequence loc
(map compile-expr else)))))))
(defspecial defconst (loc args)
(pmatch args
((,sym ,value . ,doc)
(if (handle-var-def loc sym doc)
(make-sequence loc
(list (set-variable! loc
sym
value-slot
(compile-expr value))
(make-const loc sym)))))))
(defspecial defvar (loc args)
(pmatch args
((,sym) (make-const loc sym))
((,sym ,value . ,doc)
(if (handle-var-def loc sym doc)
(make-sequence
loc
(list
(make-conditional
loc
(make-conditional
loc
(call-primitive
loc
'module-bound?
(call-primitive loc
'resolve-interface
(make-const loc value-slot))
(make-const loc sym))
(call-primitive loc
'fluid-bound?
(make-module-ref loc value-slot sym #t))
(make-const loc #f))
(make-void loc)
(set-variable! loc sym value-slot (compile-expr value)))
(make-const loc sym)))))))
(defspecial setq (loc args)
(define (car* x) (if (null? x) '() (car x)))
(define (cdr* x) (if (null? x) '() (cdr x)))
(define (cadr* x) (car* (cdr* x)))
(define (cddr* x) (cdr* (cdr* x)))
(make-sequence
loc
(let loop ((args args) (last (nil-value loc)))
(if (null? args)
(list last)
(let ((sym (car args))
(val (compile-expr (cadr* args))))
(if (not (symbol? sym))
(report-error loc "expected symbol in setq")
(cons
(set-variable! loc sym value-slot val)
(loop (cddr* args)
(reference-variable loc sym value-slot)))))))))
(defspecial let (loc args)
(pmatch args
((,bindings . ,body)
(generate-let loc value-slot bindings body))))
(defspecial lexical-let (loc args)
(pmatch args
((,bindings . ,body)
(generate-let loc 'lexical bindings body))))
(defspecial flet (loc args)
(pmatch args
((,bindings . ,body)
(generate-let loc function-slot bindings body))))
(defspecial let* (loc args)
(pmatch args
((,bindings . ,body)
(generate-let* loc value-slot bindings body))))
(defspecial lexical-let* (loc args)
(pmatch args
((,bindings . ,body)
(generate-let* loc 'lexical bindings body))))
(defspecial flet* (loc args)
(pmatch args
((,bindings . ,body)
(generate-let* loc function-slot bindings body))))
;;; Temporarily set symbols as always lexical only for the lexical scope
;;; of a construct.
(defspecial with-always-lexical (loc args)
(pmatch args
((,syms . ,body)
(with-added-symbols loc always-lexical syms body))))
;;; guile-ref allows building TreeIL's module references from within
;;; elisp as a way to access data within the Guile universe. The module
;;; and symbol referenced are static values, just like (@ module symbol)
;;; does!
(defspecial guile-ref (loc args)
(pmatch args
((,module ,sym) (guard (and (list? module) (symbol? sym)))
(make-module-ref loc module sym #t))))
;;; guile-primitive allows to create primitive references, which are
;;; still a little faster.
(defspecial guile-primitive (loc args)
(pmatch args
((,sym)
(make-primitive-ref loc sym))))
;;; A while construct is transformed into a tail-recursive loop like
;;; this:
;;;
;;; (letrec ((iterate (lambda ()
;;; (if condition
;;; (begin body
;;; (iterate))
;;; #nil))))
;;; (iterate))
;;;
;;; As letrec is not directly accessible from elisp, while is
;;; implemented here instead of with a macro.
(defspecial while (loc args)
(pmatch args
((,condition . ,body)
(let* ((itersym (gensym))
(compiled-body (map compile-expr body))
(iter-call (make-application loc
(make-lexical-ref loc
'iterate
itersym)
(list)))
(full-body (make-sequence loc
`(,@compiled-body ,iter-call)))
(lambda-body (make-conditional loc
(compile-expr condition)
full-body
(nil-value loc)))
(iter-thunk (make-lambda loc
'()
(make-lambda-case #f
'()
#f
#f
#f
'()
'()
lambda-body
#f))))
(make-letrec loc
#f
'(iterate)
(list itersym)
(list iter-thunk)
iter-call)))))
(defspecial function (loc args)
(pmatch args
(((lambda ,args . ,body))
(compile-lambda loc args body))
((,sym) (guard (symbol? sym))
(reference-variable loc sym function-slot))))
(defspecial defmacro (loc args)
(pmatch args
((,name ,args . ,body)
(if (not (symbol? name))
(report-error loc "expected symbol as macro name" name)
(let* ((tree-il
(make-sequence
loc
(list
(set-variable!
loc
name
function-slot
(make-application
loc
(make-module-ref loc '(guile) 'cons #t)
(list (make-const loc 'macro)
(compile-lambda loc args body))))
(make-const loc name)))))
(compile (ensuring-globals loc bindings-data tree-il)
#:from 'tree-il
#:to 'value)
tree-il)))))
(defspecial defun (loc args)
(pmatch args
((,name ,args . ,body)
(if (not (symbol? name))
(report-error loc "expected symbol as function name" name)
(make-sequence loc
(list (set-variable! loc
name
function-slot
(compile-lambda loc
args
body))
(make-const loc name)))))))
(defspecial #{`}# (loc args)
(pmatch args
((,val)
(process-backquote loc val))))
(defspecial quote (loc args)
(pmatch args
((,val)
(make-const loc val))))
;;; Compile a compound expression to Tree-IL.
(define (compile-pair loc expr)
(let ((operator (car expr))
(arguments (cdr expr)))
(cond
((find-operator operator 'special-operator)
=> (lambda (special-operator-function)
(special-operator-function loc arguments)))
((find-operator operator 'macro)
=> (lambda (macro-function)
(compile-expr (apply macro-function arguments))))
(else
(make-application loc
(if (symbol? operator)
(reference-variable loc
operator
function-slot)
(compile-expr operator))
(map compile-expr arguments))))))
;;; Compile a symbol expression. This is a variable reference or maybe
;;; some special value like nil.
(define (compile-symbol loc sym)
(case sym
((nil) (nil-value loc))
((t) (t-value loc))
(else (reference-variable loc sym value-slot))))
;;; Compile a single expression to TreeIL.
(define (compile-expr expr)
(let ((loc (location expr)))
(cond
((symbol? expr)
(compile-symbol loc expr))
((pair? expr)
(compile-pair loc expr))
(else (make-const loc expr)))))
;;; Process the compiler options.
;;; FIXME: Why is '(()) passed as options by the REPL?
(define (valid-symbol-list-arg? value)
(or (eq? value 'all)
(and (list? value) (and-map symbol? value))))
(define (process-options! opt)
(if (and (not (null? opt))
(not (equal? opt '(()))))
(if (null? (cdr opt))
(report-error #f "Invalid compiler options" opt)
(let ((key (car opt))
(value (cadr opt)))
(case key
((#:warnings) ; ignore
#f)
((#:always-lexical)
(if (valid-symbol-list-arg? value)
(fluid-set! always-lexical value)
(report-error #f
"Invalid value for #:always-lexical"
value)))
(else (report-error #f
"Invalid compiler option"
key)))))))
;;; Entry point for compilation to TreeIL. This creates the bindings
;;; data structure, and after compiling the main expression we need to
;;; make sure all globals for symbols used during the compilation are
;;; created using the generate-ensure-global function.
(define (compile-tree-il expr env opts)
(values
(with-fluids ((bindings-data (make-bindings))
(disable-void-check '())
(always-lexical '()))
(process-options! opts)
(let ((compiled (compile-expr expr)))
(ensuring-globals (location expr) bindings-data compiled)))
env
env))
|