Spaces:
Sleeping
Sleeping
File size: 49,620 Bytes
f65fe85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 |
;;; TREE-IL -> GLIL compiler
;; Copyright (C) 2001,2008,2009,2010,2011,2012,2013,2014 Free Software Foundation, Inc.
;;;; This library is free software; you can redistribute it and/or
;;;; modify it under the terms of the GNU Lesser General Public
;;;; License as published by the Free Software Foundation; either
;;;; version 3 of the License, or (at your option) any later version.
;;;;
;;;; This library is distributed in the hope that it will be useful,
;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;;; Lesser General Public License for more details.
;;;;
;;;; You should have received a copy of the GNU Lesser General Public
;;;; License along with this library; if not, write to the Free Software
;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
;;; Code:
(define-module (language tree-il compile-glil)
#:use-module (system base syntax)
#:use-module (system base pmatch)
#:use-module (system base message)
#:use-module (ice-9 receive)
#:use-module (language glil)
#:use-module (system vm instruction)
#:use-module (language tree-il)
#:use-module (language tree-il optimize)
#:use-module (language tree-il canonicalize)
#:use-module (language tree-il analyze)
#:use-module ((srfi srfi-1) #:select (filter-map))
#:export (compile-glil))
;; allocation:
;; sym -> {lambda -> address}
;; lambda -> (labels . free-locs)
;; lambda-case -> (gensym . nlocs)
;;
;; address ::= (local? boxed? . index)
;; labels ::= ((sym . lambda) ...)
;; free-locs ::= ((sym0 . address0) (sym1 . address1) ...)
;; free variable addresses are relative to parent proc.
(define *comp-module* (make-fluid))
(define %warning-passes
`((unused-variable . ,unused-variable-analysis)
(unused-toplevel . ,unused-toplevel-analysis)
(unbound-variable . ,unbound-variable-analysis)
(arity-mismatch . ,arity-analysis)
(format . ,format-analysis)))
(define (compile-glil x e opts)
(define warnings
(or (and=> (memq #:warnings opts) cadr)
'()))
;; Go through the warning passes.
(let ((analyses (filter-map (lambda (kind)
(assoc-ref %warning-passes kind))
warnings)))
(analyze-tree analyses x e))
(let* ((x (make-lambda (tree-il-src x) '()
(make-lambda-case #f '() #f #f #f '() '() x #f)))
(x (optimize! x e opts))
(x (canonicalize! x))
(allocation (analyze-lexicals x)))
(with-fluids ((*comp-module* e))
(values (flatten-lambda x #f allocation)
e
e))))
(define *primcall-ops* (make-hash-table))
(for-each
(lambda (x) (hash-set! *primcall-ops* (car x) (cdr x)))
'(((eq? . 2) . eq?)
((eqv? . 2) . eqv?)
((equal? . 2) . equal?)
((= . 2) . ee?)
((< . 2) . lt?)
((> . 2) . gt?)
((<= . 2) . le?)
((>= . 2) . ge?)
((+ . 2) . add)
((- . 2) . sub)
((1+ . 1) . add1)
((1- . 1) . sub1)
((* . 2) . mul)
((/ . 2) . div)
((quotient . 2) . quo)
((remainder . 2) . rem)
((modulo . 2) . mod)
((ash . 2) . ash)
((logand . 2) . logand)
((logior . 2) . logior)
((logxor . 2) . logxor)
((not . 1) . not)
((pair? . 1) . pair?)
((cons . 2) . cons)
((car . 1) . car)
((cdr . 1) . cdr)
((set-car! . 2) . set-car!)
((set-cdr! . 2) . set-cdr!)
((null? . 1) . null?)
((list? . 1) . list?)
((symbol? . 1) . symbol?)
((vector? . 1) . vector?)
(list . list)
(vector . vector)
((class-of . 1) . class-of)
((vector-ref . 2) . vector-ref)
((vector-set! . 3) . vector-set)
((variable-ref . 1) . variable-ref)
;; nb, *not* variable-set! -- the args are switched
((variable-bound? . 1) . variable-bound?)
((struct? . 1) . struct?)
((struct-vtable . 1) . struct-vtable)
((struct-ref . 2) . struct-ref)
((struct-set! . 3) . struct-set)
(make-struct/no-tail . make-struct)
;; hack for javascript
((return . 1) . return)
;; hack for lua
(return/values . return/values)
((bytevector-u8-ref . 2) . bv-u8-ref)
((bytevector-u8-set! . 3) . bv-u8-set)
((bytevector-s8-ref . 2) . bv-s8-ref)
((bytevector-s8-set! . 3) . bv-s8-set)
((bytevector-u16-ref . 3) . bv-u16-ref)
((bytevector-u16-set! . 4) . bv-u16-set)
((bytevector-u16-native-ref . 2) . bv-u16-native-ref)
((bytevector-u16-native-set! . 3) . bv-u16-native-set)
((bytevector-s16-ref . 3) . bv-s16-ref)
((bytevector-s16-set! . 4) . bv-s16-set)
((bytevector-s16-native-ref . 2) . bv-s16-native-ref)
((bytevector-s16-native-set! . 3) . bv-s16-native-set)
((bytevector-u32-ref . 3) . bv-u32-ref)
((bytevector-u32-set! . 4) . bv-u32-set)
((bytevector-u32-native-ref . 2) . bv-u32-native-ref)
((bytevector-u32-native-set! . 3) . bv-u32-native-set)
((bytevector-s32-ref . 3) . bv-s32-ref)
((bytevector-s32-set! . 4) . bv-s32-set)
((bytevector-s32-native-ref . 2) . bv-s32-native-ref)
((bytevector-s32-native-set! . 3) . bv-s32-native-set)
((bytevector-u64-ref . 3) . bv-u64-ref)
((bytevector-u64-set! . 4) . bv-u64-set)
((bytevector-u64-native-ref . 2) . bv-u64-native-ref)
((bytevector-u64-native-set! . 3) . bv-u64-native-set)
((bytevector-s64-ref . 3) . bv-s64-ref)
((bytevector-s64-set! . 4) . bv-s64-set)
((bytevector-s64-native-ref . 2) . bv-s64-native-ref)
((bytevector-s64-native-set! . 3) . bv-s64-native-set)
((bytevector-ieee-single-ref . 3) . bv-f32-ref)
((bytevector-ieee-single-set! . 4) . bv-f32-set)
((bytevector-ieee-single-native-ref . 2) . bv-f32-native-ref)
((bytevector-ieee-single-native-set! . 3) . bv-f32-native-set)
((bytevector-ieee-double-ref . 3) . bv-f64-ref)
((bytevector-ieee-double-set! . 4) . bv-f64-set)
((bytevector-ieee-double-native-ref . 2) . bv-f64-native-ref)
((bytevector-ieee-double-native-set! . 3) . bv-f64-native-set)))
(define (make-label) (gensym ":L"))
(define (vars->bind-list ids vars allocation proc)
(map (lambda (id v)
(pmatch (hashq-ref (hashq-ref allocation v) proc)
((#t ,boxed? . ,n)
(list id boxed? n))
(,x (error "bad var list element" id v x))))
ids
vars))
(define (emit-bindings src ids vars allocation proc emit-code)
(emit-code src (make-glil-bind
(vars->bind-list ids vars allocation proc))))
(define (with-output-to-code proc)
(let ((out '()))
(define (emit-code src x)
(set! out (cons x out))
(if src
(set! out (cons (make-glil-source src) out))))
(proc emit-code)
(reverse out)))
(define (flatten-lambda x self-label allocation)
(record-case x
((<lambda> src meta body)
(make-glil-program
meta
(with-output-to-code
(lambda (emit-code)
;; write source info for proc
(if src (emit-code #f (make-glil-source src)))
;; compile the body, yo
(flatten-lambda-case body allocation x self-label
(car (hashq-ref allocation x))
emit-code)))))))
(define (flatten-lambda-case lcase allocation self self-label fix-labels
emit-code)
(define (emit-label label)
(emit-code #f (make-glil-label label)))
(define (emit-branch src inst label)
(emit-code src (make-glil-branch inst label)))
;; RA: "return address"; #f unless we're in a non-tail fix with labels
;; MVRA: "multiple-values return address"; #f unless we're in a let-values
(let comp ((x lcase) (context 'tail) (RA #f) (MVRA #f))
(define (comp-tail tree) (comp tree context RA MVRA))
(define (comp-push tree) (comp tree 'push #f #f))
(define (comp-drop tree) (comp tree 'drop #f #f))
(define (comp-vals tree MVRA) (comp tree 'vals #f MVRA))
(define (comp-fix tree RA) (comp tree context RA MVRA))
;; A couple of helpers. Note that if we are in tail context, we
;; won't have an RA.
(define (maybe-emit-return)
(if RA
(emit-branch #f 'br RA)
(if (eq? context 'tail)
(emit-code #f (make-glil-call 'return 1)))))
;; After lexical binding forms in non-tail context, call this
;; function to clear stack slots, allowing their previous values to
;; be collected.
(define (clear-stack-slots context syms)
(case context
((push drop)
(for-each (lambda (v)
(and=>
;; Can be #f if the var is labels-allocated.
(hashq-ref allocation v)
(lambda (h)
(pmatch (hashq-ref h self)
((#t _ . ,n)
(emit-code #f (make-glil-void))
(emit-code #f (make-glil-lexical #t #f 'set n)))
(,loc (error "bad let var allocation" x loc))))))
syms))))
(record-case x
((<void>)
(case context
((push vals tail)
(emit-code #f (make-glil-void))))
(maybe-emit-return))
((<const> src exp)
(case context
((push vals tail)
(emit-code src (make-glil-const exp))))
(maybe-emit-return))
;; FIXME: should represent sequence as exps tail
((<sequence> exps)
(let lp ((exps exps))
(if (null? (cdr exps))
(comp-tail (car exps))
(begin
(comp-drop (car exps))
(lp (cdr exps))))))
((<application> src proc args)
;; FIXME: need a better pattern-matcher here
(cond
((and (primitive-ref? proc)
(eq? (primitive-ref-name proc) '@apply)
(>= (length args) 1))
(let ((proc (car args))
(args (cdr args)))
(cond
((and (primitive-ref? proc) (eq? (primitive-ref-name proc) 'values)
(not (eq? context 'push)) (not (eq? context 'vals)))
;; tail: (lambda () (apply values '(1 2)))
;; drop: (lambda () (apply values '(1 2)) 3)
;; push: (lambda () (list (apply values '(10 12)) 1))
(case context
((drop) (for-each comp-drop args) (maybe-emit-return))
((tail)
(for-each comp-push args)
(emit-code src (make-glil-call 'return/values* (length args))))))
(else
(case context
((tail)
(comp-push proc)
(for-each comp-push args)
(emit-code src (make-glil-call 'tail-apply (1+ (length args)))))
((push)
(emit-code src (make-glil-call 'new-frame 0))
(comp-push proc)
(for-each comp-push args)
(emit-code src (make-glil-call 'apply (1+ (length args))))
(maybe-emit-return))
((vals)
(comp-vals
(make-application src (make-primitive-ref #f 'apply)
(cons proc args))
MVRA)
(maybe-emit-return))
((drop)
;; Well, shit. The proc might return any number of
;; values (including 0), since it's in a drop context,
;; yet apply does not create a MV continuation. So we
;; mv-call out to our trampoline instead.
(comp-drop
(make-application src (make-primitive-ref #f 'apply)
(cons proc args)))
(maybe-emit-return)))))))
((and (primitive-ref? proc) (eq? (primitive-ref-name proc) 'values))
;; tail: (lambda () (values '(1 2)))
;; drop: (lambda () (values '(1 2)) 3)
;; push: (lambda () (list (values '(10 12)) 1))
;; vals: (let-values (((a b ...) (values 1 2 ...))) ...)
(case context
((drop) (for-each comp-drop args) (maybe-emit-return))
((push)
(case (length args)
((0)
;; FIXME: This is surely an error. We need to add a
;; values-mismatch warning pass.
(emit-code src (make-glil-call 'new-frame 0))
(comp-push proc)
(emit-code src (make-glil-call 'call 0))
(maybe-emit-return))
(else
;; Taking advantage of unspecified order of evaluation of
;; arguments.
(for-each comp-drop (cdr args))
(comp-push (car args))
(maybe-emit-return))))
((vals)
(for-each comp-push args)
(emit-code #f (make-glil-const (length args)))
(emit-branch src 'br MVRA))
((tail)
(for-each comp-push args)
(emit-code src (let ((len (length args)))
(if (= len 1)
(make-glil-call 'return 1)
(make-glil-call 'return/values len)))))))
((and (primitive-ref? proc)
(eq? (primitive-ref-name proc) '@call-with-values)
(= (length args) 2))
;; CONSUMER
;; PRODUCER
;; (mv-call MV)
;; ([tail]-call 1)
;; goto POST
;; MV: [tail-]call/nargs
;; POST: (maybe-drop)
(case context
((vals)
;; Fall back.
(comp-vals
(make-application src (make-primitive-ref #f 'call-with-values)
args)
MVRA)
(maybe-emit-return))
(else
(let ((MV (make-label)) (POST (make-label))
(producer (car args)) (consumer (cadr args)))
(if (not (eq? context 'tail))
(emit-code src (make-glil-call 'new-frame 0)))
(comp-push consumer)
(emit-code src (make-glil-call 'new-frame 0))
(comp-push producer)
(emit-code src (make-glil-mv-call 0 MV))
(case context
((tail) (emit-code src (make-glil-call 'tail-call 1)))
(else (emit-code src (make-glil-call 'call 1))
(emit-branch #f 'br POST)))
(emit-label MV)
(case context
((tail) (emit-code src (make-glil-call 'tail-call/nargs 0)))
(else (emit-code src (make-glil-call 'call/nargs 0))
(emit-label POST)
(if (eq? context 'drop)
(emit-code #f (make-glil-call 'drop 1)))
(maybe-emit-return)))))))
((and (primitive-ref? proc)
(eq? (primitive-ref-name proc) '@call-with-current-continuation)
(= (length args) 1))
(case context
((tail)
(comp-push (car args))
(emit-code src (make-glil-call 'tail-call/cc 1)))
((vals)
(comp-vals
(make-application
src (make-primitive-ref #f 'call-with-current-continuation)
args)
MVRA)
(maybe-emit-return))
((push)
(comp-push (car args))
(emit-code src (make-glil-call 'call/cc 1))
(maybe-emit-return))
((drop)
;; Crap. Just like `apply' in drop context.
(comp-drop
(make-application
src (make-primitive-ref #f 'call-with-current-continuation)
args))
(maybe-emit-return))))
;; A hack for variable-set, the opcode for which takes its args
;; reversed, relative to the variable-set! function
((and (primitive-ref? proc)
(eq? (primitive-ref-name proc) 'variable-set!)
(= (length args) 2))
(comp-push (cadr args))
(comp-push (car args))
(emit-code src (make-glil-call 'variable-set 2))
(case context
((tail push vals) (emit-code #f (make-glil-void))))
(maybe-emit-return))
((and (primitive-ref? proc)
(or (hash-ref *primcall-ops*
(cons (primitive-ref-name proc) (length args)))
(hash-ref *primcall-ops* (primitive-ref-name proc))))
=> (lambda (op)
(for-each comp-push args)
(emit-code src (make-glil-call op (length args)))
(case (instruction-pushes op)
((0)
(case context
((tail push vals) (emit-code #f (make-glil-void))))
(maybe-emit-return))
((1)
(case context
((drop) (emit-code #f (make-glil-call 'drop 1))))
(maybe-emit-return))
((-1)
;; A control instruction, like return/values. Here we
;; just have to hope that the author of the tree-il
;; knew what they were doing.
*unspecified*)
(else
(error "bad primitive op: too many pushes"
op (instruction-pushes op))))))
;; call to the same lambda-case in tail position
((and (lexical-ref? proc)
self-label (eq? (lexical-ref-gensym proc) self-label)
(eq? context 'tail)
(not (lambda-case-kw lcase))
(not (lambda-case-rest lcase))
(= (length args)
(+ (length (lambda-case-req lcase))
(or (and=> (lambda-case-opt lcase) length) 0))))
(for-each comp-push args)
(for-each (lambda (sym)
(pmatch (hashq-ref (hashq-ref allocation sym) self)
((#t #f . ,index) ; unboxed
(emit-code #f (make-glil-lexical #t #f 'set index)))
((#t #t . ,index) ; boxed
;; new box
(emit-code #f (make-glil-lexical #t #t 'box index)))
(,x (error "bad lambda-case arg allocation" x))))
(reverse (lambda-case-gensyms lcase)))
(emit-branch src 'br (car (hashq-ref allocation lcase))))
;; lambda, the ultimate goto
((and (lexical-ref? proc)
(assq (lexical-ref-gensym proc) fix-labels))
;; like the self-tail-call case, though we can handle "drop"
;; contexts too. first, evaluate new values, pushing them on
;; the stack
(for-each comp-push args)
;; find the specific case, rename args, and goto the case label
(let lp ((lcase (lambda-body
(assq-ref fix-labels (lexical-ref-gensym proc)))))
(cond
((and (lambda-case? lcase)
(not (lambda-case-kw lcase))
(not (lambda-case-opt lcase))
(not (lambda-case-rest lcase))
(= (length args) (length (lambda-case-req lcase))))
;; we have a case that matches the args; rename variables
;; and goto the case label
(for-each (lambda (sym)
(pmatch (hashq-ref (hashq-ref allocation sym) self)
((#t #f . ,index) ; unboxed
(emit-code #f (make-glil-lexical #t #f 'set index)))
((#t #t . ,index) ; boxed
(emit-code #f (make-glil-lexical #t #t 'box index)))
(,x (error "bad lambda-case arg allocation" x))))
(reverse (lambda-case-gensyms lcase)))
(emit-branch src 'br (car (hashq-ref allocation lcase))))
((lambda-case? lcase)
;; no match, try next case
(lp (lambda-case-alternate lcase)))
(else
;; no cases left. we can't really handle this currently.
;; ideally we would push on a new frame, then do a "local
;; call" -- which doesn't require consing up a program
;; object. but for now error, as this sort of case should
;; preclude label allocation.
(error "couldn't find matching case for label call" x)))))
(else
(if (not (eq? context 'tail))
(emit-code src (make-glil-call 'new-frame 0)))
(comp-push proc)
(for-each comp-push args)
(let ((len (length args)))
(case context
((tail) (if (<= len #xff)
(emit-code src (make-glil-call 'tail-call len))
(begin
(comp-push (make-const #f len))
(emit-code src (make-glil-call 'tail-call/nargs 0)))))
((push) (if (<= len #xff)
(emit-code src (make-glil-call 'call len))
(begin
(comp-push (make-const #f len))
(emit-code src (make-glil-call 'call/nargs 0))))
(maybe-emit-return))
;; FIXME: mv-call doesn't have a /nargs variant, so it is
;; limited to 255 args. Can work around it with a
;; trampoline and tail-call/nargs, but it's not so nice.
((vals) (emit-code src (make-glil-mv-call len MVRA))
(maybe-emit-return))
((drop) (let ((MV (make-label)) (POST (make-label)))
(emit-code src (make-glil-mv-call len MV))
(emit-code #f (make-glil-call 'drop 1))
(emit-branch #f 'br (or RA POST))
(emit-label MV)
(emit-code #f (make-glil-mv-bind 0 #f))
(if RA
(emit-branch #f 'br RA)
(emit-label POST)))))))))
((<conditional> src test consequent alternate)
;; TEST
;; (br-if-not L1)
;; consequent
;; (br L2)
;; L1: alternate
;; L2:
(let ((L1 (make-label)) (L2 (make-label)))
;; need a pattern matcher
(record-case test
((<application> proc args)
(record-case proc
((<primitive-ref> name)
(let ((len (length args)))
(cond
((and (eq? name 'eq?) (= len 2))
(comp-push (car args))
(comp-push (cadr args))
(emit-branch src 'br-if-not-eq L1))
((and (eq? name 'null?) (= len 1))
(comp-push (car args))
(emit-branch src 'br-if-not-null L1))
((and (eq? name 'not) (= len 1))
(let ((app (car args)))
(record-case app
((<application> proc args)
(let ((len (length args)))
(record-case proc
((<primitive-ref> name)
(cond
((and (eq? name 'eq?) (= len 2))
(comp-push (car args))
(comp-push (cadr args))
(emit-branch src 'br-if-eq L1))
((and (eq? name 'null?) (= len 1))
(comp-push (car args))
(emit-branch src 'br-if-null L1))
(else
(comp-push app)
(emit-branch src 'br-if L1))))
(else
(comp-push app)
(emit-branch src 'br-if L1)))))
(else
(comp-push app)
(emit-branch src 'br-if L1)))))
(else
(comp-push test)
(emit-branch src 'br-if-not L1)))))
(else
(comp-push test)
(emit-branch src 'br-if-not L1))))
(else
(comp-push test)
(emit-branch src 'br-if-not L1)))
(comp-tail consequent)
;; if there is an RA, comp-tail will cause a jump to it -- just
;; have to clean up here if there is no RA.
(if (and (not RA) (not (eq? context 'tail)))
(emit-branch #f 'br L2))
(emit-label L1)
(comp-tail alternate)
(if (and (not RA) (not (eq? context 'tail)))
(emit-label L2))))
((<primitive-ref> src name)
(cond
((eq? (module-variable (fluid-ref *comp-module*) name)
(module-variable the-root-module name))
(case context
((tail push vals)
(emit-code src (make-glil-toplevel 'ref name))))
(maybe-emit-return))
((module-variable the-root-module name)
(case context
((tail push vals)
(emit-code src (make-glil-module 'ref '(guile) name #f))))
(maybe-emit-return))
(else
(case context
((tail push vals)
(emit-code src (make-glil-module
'ref (module-name (fluid-ref *comp-module*)) name #f))))
(maybe-emit-return))))
((<lexical-ref> src gensym)
(case context
((push vals tail)
(pmatch (hashq-ref (hashq-ref allocation gensym) self)
((,local? ,boxed? . ,index)
(emit-code src (make-glil-lexical local? boxed? 'ref index)))
(,loc
(error "bad lexical allocation" x loc)))))
(maybe-emit-return))
((<lexical-set> src gensym exp)
(comp-push exp)
(pmatch (hashq-ref (hashq-ref allocation gensym) self)
((,local? ,boxed? . ,index)
(emit-code src (make-glil-lexical local? boxed? 'set index)))
(,loc
(error "bad lexical allocation" x loc)))
(case context
((tail push vals)
(emit-code #f (make-glil-void))))
(maybe-emit-return))
((<module-ref> src mod name public?)
(emit-code src (make-glil-module 'ref mod name public?))
(case context
((drop) (emit-code #f (make-glil-call 'drop 1))))
(maybe-emit-return))
((<module-set> src mod name public? exp)
(comp-push exp)
(emit-code src (make-glil-module 'set mod name public?))
(case context
((tail push vals)
(emit-code #f (make-glil-void))))
(maybe-emit-return))
((<toplevel-ref> src name)
(emit-code src (make-glil-toplevel 'ref name))
(case context
((drop) (emit-code #f (make-glil-call 'drop 1))))
(maybe-emit-return))
((<toplevel-set> src name exp)
(comp-push exp)
(emit-code src (make-glil-toplevel 'set name))
(case context
((tail push vals)
(emit-code #f (make-glil-void))))
(maybe-emit-return))
((<toplevel-define> src name exp)
(comp-push exp)
(emit-code src (make-glil-toplevel 'define name))
(case context
((tail push vals)
(emit-code #f (make-glil-void))))
(maybe-emit-return))
((<lambda>)
(let ((free-locs (cdr (hashq-ref allocation x))))
(case context
((push vals tail)
(emit-code #f (flatten-lambda x #f allocation))
(if (not (null? free-locs))
(begin
(for-each
(lambda (loc)
(pmatch loc
((,local? ,boxed? . ,n)
(emit-code #f (make-glil-lexical local? #f 'ref n)))
(else (error "bad lambda free var allocation" x loc))))
free-locs)
(emit-code #f (make-glil-call 'make-closure
(length free-locs))))))))
(maybe-emit-return))
((<lambda-case> src req opt rest kw inits gensyms alternate body)
;; o/~ feature on top of feature o/~
;; req := (name ...)
;; opt := (name ...) | #f
;; rest := name | #f
;; kw: (allow-other-keys? (keyword name var) ...) | #f
;; gensyms: (sym ...)
;; init: tree-il in context of gensyms
;; gensyms map to named arguments in the following order:
;; required, optional (positional), rest, keyword.
(let* ((nreq (length req))
(nopt (if opt (length opt) 0))
(rest-idx (and rest (+ nreq nopt)))
(opt-names (or opt '()))
(allow-other-keys? (if kw (car kw) #f))
(kw-indices (map (lambda (x)
(pmatch x
((,key ,name ,var)
(cons key (list-index gensyms var)))
(else (error "bad kwarg" x))))
(if kw (cdr kw) '())))
(nargs (apply max (+ nreq nopt (if rest 1 0))
(map 1+ (map cdr kw-indices))))
(nlocs (cdr (hashq-ref allocation x)))
(alternate-label (and alternate (make-label))))
(or (= nargs
(length gensyms)
(+ nreq (length inits) (if rest 1 0)))
(error "lambda-case gensyms don't correspond to args"
req opt rest kw inits gensyms nreq nopt kw-indices nargs))
;; the prelude, to check args & reset the stack pointer,
;; allowing room for locals
(emit-code
src
(cond
(kw
(make-glil-kw-prelude nreq nopt rest-idx kw-indices
allow-other-keys? nlocs alternate-label))
((or rest opt)
(make-glil-opt-prelude nreq nopt rest-idx nlocs alternate-label))
(#t
(make-glil-std-prelude nreq nlocs alternate-label))))
;; box args if necessary
(for-each
(lambda (v)
(pmatch (hashq-ref (hashq-ref allocation v) self)
((#t #t . ,n)
(emit-code #f (make-glil-lexical #t #f 'ref n))
(emit-code #f (make-glil-lexical #t #t 'box n)))))
gensyms)
;; write bindings info
(if (not (null? gensyms))
(emit-bindings
#f
(let lp ((kw (if kw (cdr kw) '()))
(names (append (reverse opt-names) (reverse req)))
(gensyms (list-tail gensyms (+ nreq nopt
(if rest 1 0)))))
(pmatch kw
(()
;; fixme: check that gensyms is empty
(reverse (if rest (cons rest names) names)))
(((,key ,name ,var) . ,kw)
(if (memq var gensyms)
(lp kw (cons name names) (delq var gensyms))
(lp kw names gensyms)))
(,kw (error "bad keywords, yo" kw))))
gensyms allocation self emit-code))
;; init optional/kw args
(let lp ((inits inits) (n nreq) (gensyms (list-tail gensyms nreq)))
(cond
((null? inits)) ; done
((and rest-idx (= n rest-idx))
(lp inits (1+ n) (cdr gensyms)))
(#t
(pmatch (hashq-ref (hashq-ref allocation (car gensyms)) self)
((#t ,boxed? . ,n*) (guard (= n* n))
(let ((L (make-label)))
(emit-code #f (make-glil-lexical #t boxed? 'bound? n))
(emit-code #f (make-glil-branch 'br-if L))
(comp-push (car inits))
(emit-code #f (make-glil-lexical #t boxed? 'set n))
(emit-label L)
(lp (cdr inits) (1+ n) (cdr gensyms))))
(#t (error "bad arg allocation" (car gensyms) inits))))))
;; post-prelude case label for label calls
(emit-label (car (hashq-ref allocation x)))
(comp-tail body)
(if (not (null? gensyms))
(emit-code #f (make-glil-unbind)))
(if alternate-label
(begin
(emit-label alternate-label)
(flatten-lambda-case alternate allocation self self-label
fix-labels emit-code)))))
((<let> src names gensyms vals body)
(for-each comp-push vals)
(emit-bindings src names gensyms allocation self emit-code)
(for-each (lambda (v)
(pmatch (hashq-ref (hashq-ref allocation v) self)
((#t #f . ,n)
(emit-code src (make-glil-lexical #t #f 'set n)))
((#t #t . ,n)
(emit-code src (make-glil-lexical #t #t 'box n)))
(,loc (error "bad let var allocation" x loc))))
(reverse gensyms))
(comp-tail body)
(clear-stack-slots context gensyms)
(emit-code #f (make-glil-unbind)))
((<letrec> src in-order? names gensyms vals body)
;; First prepare heap storage slots.
(for-each (lambda (v)
(pmatch (hashq-ref (hashq-ref allocation v) self)
((#t #t . ,n)
(emit-code src (make-glil-lexical #t #t 'empty-box n)))
(,loc (error "bad letrec var allocation" x loc))))
gensyms)
;; Even though the slots are empty, the bindings are valid.
(emit-bindings src names gensyms allocation self emit-code)
(cond
(in-order?
;; For letrec*, bind values in order.
(for-each (lambda (name v val)
(pmatch (hashq-ref (hashq-ref allocation v) self)
((#t #t . ,n)
(comp-push val)
(emit-code src (make-glil-lexical #t #t 'set n)))
(,loc (error "bad letrec var allocation" x loc))))
names gensyms vals))
(else
;; But for letrec, eval all values, then bind.
(for-each comp-push vals)
(for-each (lambda (v)
(pmatch (hashq-ref (hashq-ref allocation v) self)
((#t #t . ,n)
(emit-code src (make-glil-lexical #t #t 'set n)))
(,loc (error "bad letrec var allocation" x loc))))
(reverse gensyms))))
(comp-tail body)
(clear-stack-slots context gensyms)
(emit-code #f (make-glil-unbind)))
((<fix> src names gensyms vals body)
;; The ideal here is to just render the lambda bodies inline, and
;; wire the code together with gotos. We can do that if
;; analyze-lexicals has determined that a given var has "label"
;; allocation -- which is the case if it is in `fix-labels'.
;;
;; But even for closures that we can't inline, we can do some
;; tricks to avoid heap-allocation for the binding itself. Since
;; we know the vals are lambdas, we can set them to their local
;; var slots first, then capture their bindings, mutating them in
;; place.
(let ((new-RA (if (or (eq? context 'tail) RA) #f (make-label))))
(for-each
(lambda (x v)
(cond
((hashq-ref allocation x)
;; allocating a closure
(emit-code #f (flatten-lambda x v allocation))
(let ((free-locs (cdr (hashq-ref allocation x))))
(if (not (null? free-locs))
;; Need to make-closure first, so we have a fresh closure on
;; the heap, but with a temporary free values.
(begin
(for-each (lambda (loc)
(emit-code #f (make-glil-const #f)))
free-locs)
(emit-code #f (make-glil-call 'make-closure
(length free-locs))))))
(pmatch (hashq-ref (hashq-ref allocation v) self)
((#t #f . ,n)
(emit-code src (make-glil-lexical #t #f 'set n)))
(,loc (error "bad fix var allocation" x loc))))
(else
;; labels allocation: emit label & body, but jump over it
(let ((POST (make-label)))
(emit-branch #f 'br POST)
(let lp ((lcase (lambda-body x)))
(if lcase
(record-case lcase
((<lambda-case> src req gensyms body alternate)
(emit-label (car (hashq-ref allocation lcase)))
;; FIXME: opt & kw args in the bindings
(emit-bindings #f req gensyms allocation self emit-code)
(if src
(emit-code #f (make-glil-source src)))
(comp-fix body (or RA new-RA))
(emit-code #f (make-glil-unbind))
(lp alternate)))
(emit-label POST)))))))
vals
gensyms)
;; Emit bindings metadata for closures
(let ((binds (let lp ((out '()) (gensyms gensyms) (names names))
(cond ((null? gensyms) (reverse! out))
((assq (car gensyms) fix-labels)
(lp out (cdr gensyms) (cdr names)))
(else
(lp (acons (car gensyms) (car names) out)
(cdr gensyms) (cdr names)))))))
(emit-bindings src (map cdr binds) (map car binds)
allocation self emit-code))
;; Now go back and fix up the bindings for closures.
(for-each
(lambda (x v)
(let ((free-locs (if (hashq-ref allocation x)
(cdr (hashq-ref allocation x))
;; can hit this latter case for labels allocation
'())))
(if (not (null? free-locs))
(begin
(for-each
(lambda (loc)
(pmatch loc
((,local? ,boxed? . ,n)
(emit-code #f (make-glil-lexical local? #f 'ref n)))
(else (error "bad free var allocation" x loc))))
free-locs)
(pmatch (hashq-ref (hashq-ref allocation v) self)
((#t #f . ,n)
(emit-code #f (make-glil-lexical #t #f 'fix n)))
(,loc (error "bad fix var allocation" x loc)))))))
vals
gensyms)
(comp-tail body)
(if new-RA
(emit-label new-RA))
(clear-stack-slots context gensyms)
(emit-code #f (make-glil-unbind))))
((<let-values> src exp body)
(record-case body
((<lambda-case> req opt kw rest gensyms body alternate)
(if (or opt kw alternate)
(error "unexpected lambda-case in let-values" x))
(let ((MV (make-label)))
(comp-vals exp MV)
(emit-code #f (make-glil-const 1))
(emit-label MV)
(emit-code src (make-glil-mv-bind
(vars->bind-list
(append req (if rest (list rest) '()))
gensyms allocation self)
(and rest #t)))
(for-each (lambda (v)
(pmatch (hashq-ref (hashq-ref allocation v) self)
((#t #f . ,n)
(emit-code src (make-glil-lexical #t #f 'set n)))
((#t #t . ,n)
(emit-code src (make-glil-lexical #t #t 'box n)))
(,loc (error "bad let-values var allocation" x loc))))
(reverse gensyms))
(comp-tail body)
(clear-stack-slots context gensyms)
(emit-code #f (make-glil-unbind))))))
;; much trickier than i thought this would be, at first, due to the need
;; to have body's return value(s) on the stack while the unwinder runs,
;; then proceed with returning or dropping or what-have-you, interacting
;; with RA and MVRA. What have you, I say.
((<dynwind> src body winder unwinder)
(comp-push winder)
(comp-push unwinder)
(comp-drop (make-application src winder '()))
(emit-code #f (make-glil-call 'wind 2))
(case context
((tail)
(let ((MV (make-label)))
(comp-vals body MV)
;; one value: unwind...
(emit-code #f (make-glil-call 'unwind 0))
(comp-drop (make-application src unwinder '()))
;; ...and return the val
(emit-code #f (make-glil-call 'return 1))
(emit-label MV)
;; multiple values: unwind...
(emit-code #f (make-glil-call 'unwind 0))
(comp-drop (make-application src unwinder '()))
;; and return the values.
(emit-code #f (make-glil-call 'return/nvalues 1))))
((push)
;; we only want one value. so ask for one value
(comp-push body)
;; and unwind, leaving the val on the stack
(emit-code #f (make-glil-call 'unwind 0))
(comp-drop (make-application src unwinder '())))
((vals)
(let ((MV (make-label)))
(comp-vals body MV)
;; one value: push 1 and fall through to MV case
(emit-code #f (make-glil-const 1))
(emit-label MV)
;; multiple values: unwind...
(emit-code #f (make-glil-call 'unwind 0))
(comp-drop (make-application src unwinder '()))
;; and goto the MVRA.
(emit-branch #f 'br MVRA)))
((drop)
;; compile body, discarding values. then unwind...
(comp-drop body)
(emit-code #f (make-glil-call 'unwind 0))
(comp-drop (make-application src unwinder '()))
;; and fall through, or goto RA if there is one.
(if RA
(emit-branch #f 'br RA)))))
((<dynlet> src fluids vals body)
(for-each comp-push fluids)
(for-each comp-push vals)
(emit-code #f (make-glil-call 'wind-fluids (length fluids)))
(case context
((tail)
(let ((MV (make-label)))
;; NB: in tail case, it is possible to preserve asymptotic tail
;; recursion, via merging unwind-fluids structures -- but we'd need
;; to compile in the body twice (once in tail context, assuming the
;; caller unwinds, and once with this trampoline thing, unwinding
;; ourselves).
(comp-vals body MV)
;; one value: unwind and return
(emit-code #f (make-glil-call 'unwind-fluids 0))
(emit-code #f (make-glil-call 'return 1))
(emit-label MV)
;; multiple values: unwind and return values
(emit-code #f (make-glil-call 'unwind-fluids 0))
(emit-code #f (make-glil-call 'return/nvalues 1))))
((push)
(comp-push body)
(emit-code #f (make-glil-call 'unwind-fluids 0)))
((vals)
(let ((MV (make-label)))
(comp-vals body MV)
;; one value: push 1 and fall through to MV case
(emit-code #f (make-glil-const 1))
(emit-label MV)
;; multiple values: unwind and goto MVRA
(emit-code #f (make-glil-call 'unwind-fluids 0))
(emit-branch #f 'br MVRA)))
((drop)
;; compile body, discarding values. then unwind...
(comp-drop body)
(emit-code #f (make-glil-call 'unwind-fluids 0))
;; and fall through, or goto RA if there is one.
(if RA
(emit-branch #f 'br RA)))))
((<dynref> src fluid)
(case context
((drop)
(comp-drop fluid))
((push vals tail)
(comp-push fluid)
(emit-code #f (make-glil-call 'fluid-ref 1))))
(maybe-emit-return))
((<dynset> src fluid exp)
(comp-push fluid)
(comp-push exp)
(emit-code #f (make-glil-call 'fluid-set 2))
(case context
((push vals tail)
(emit-code #f (make-glil-void))))
(maybe-emit-return))
;; What's the deal here? The deal is that we are compiling the start of a
;; delimited continuation. We try to avoid heap allocation in the normal
;; case; so the body is an expression, not a thunk, and we try to render
;; the handler inline. Also we did some analysis, in analyze.scm, so that
;; if the continuation isn't referenced, we don't reify it. This makes it
;; possible to implement catch and throw with delimited continuations,
;; without any overhead.
((<prompt> src tag body handler)
(let ((H (make-label))
(POST (make-label))
(escape-only? (hashq-ref allocation x)))
;; First, set up the prompt.
(comp-push tag)
(emit-code src (make-glil-prompt H escape-only?))
;; Then we compile the body, with its normal return path, unwinding
;; before proceeding.
(case context
((tail)
(let ((MV (make-label)))
(comp-vals body MV)
;; one value: unwind and return
(emit-code #f (make-glil-call 'unwind 0))
(emit-code #f (make-glil-call 'return 1))
;; multiple values: unwind and return
(emit-label MV)
(emit-code #f (make-glil-call 'unwind 0))
(emit-code #f (make-glil-call 'return/nvalues 1))))
((push)
;; we only want one value. so ask for one value, unwind, and jump to
;; post
(comp-push body)
(emit-code #f (make-glil-call 'unwind 0))
(emit-branch #f 'br (or RA POST)))
((vals)
(let ((MV (make-label)))
(comp-vals body MV)
;; one value: push 1 and fall through to MV case
(emit-code #f (make-glil-const 1))
;; multiple values: unwind and goto MVRA
(emit-label MV)
(emit-code #f (make-glil-call 'unwind 0))
(emit-branch #f 'br MVRA)))
((drop)
;; compile body, discarding values, then unwind & fall through.
(comp-drop body)
(emit-code #f (make-glil-call 'unwind 0))
(emit-branch #f 'br (or RA POST))))
(emit-label H)
;; Now the handler. The stack is now made up of the continuation, and
;; then the args to the continuation (pushed separately), and then the
;; number of args, including the continuation.
(record-case handler
((<lambda-case> req opt kw rest gensyms body alternate)
(if (or opt kw alternate)
(error "unexpected lambda-case in prompt" x))
(emit-code src (make-glil-mv-bind
(vars->bind-list
(append req (if rest (list rest) '()))
gensyms allocation self)
(and rest #t)))
(for-each (lambda (v)
(pmatch (hashq-ref (hashq-ref allocation v) self)
((#t #f . ,n)
(emit-code src (make-glil-lexical #t #f 'set n)))
((#t #t . ,n)
(emit-code src (make-glil-lexical #t #t 'box n)))
(,loc
(error "bad prompt handler arg allocation" x loc))))
(reverse gensyms))
(comp-tail body)
(emit-code #f (make-glil-unbind))))
(if (and (not RA)
(or (eq? context 'push) (eq? context 'drop)))
(emit-label POST))))
((<abort> src tag args tail)
(comp-push tag)
(for-each comp-push args)
(comp-push tail)
(emit-code src (make-glil-call 'abort (length args)))
;; so, the abort can actually return. if it does, the values will be on
;; the stack, then the MV marker, just as in an MV context.
(case context
((tail)
;; Return values.
(emit-code #f (make-glil-call 'return/nvalues 1)))
((drop)
;; Drop all values and goto RA, or otherwise fall through.
(emit-code #f (make-glil-mv-bind 0 #f))
(if RA (emit-branch #f 'br RA)))
((push)
;; Truncate to one value.
(emit-code #f (make-glil-mv-bind 1 #f)))
((vals)
;; Go to MVRA.
(emit-branch #f 'br MVRA)))))))
|