Spaces:
Sleeping
Sleeping
File size: 5,772 Bytes
6992dff bd1a2cc 6992dff 9166caa bab7d1c 6992dff bd1a2cc 6992dff 21e13bb 6992dff bab7d1c 6992dff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import spaces
import gradio as gr
import torch
import soundfile as sf
from transformers import AutoTokenizer, AutoModelForCausalLM
from xcodec2.modeling_xcodec2 import XCodec2Model
import tempfile
import json
device = "cuda" if torch.cuda.is_available() else "cpu"
####################
# 全局加载模型
####################
llasa_3b = "HKUSTAudio/Llasa-1B-multi-speakers-genshin-zh-en-ja-ko"
print("Loading tokenizer & model ...")
tokenizer = AutoTokenizer.from_pretrained(llasa_3b)
model = AutoModelForCausalLM.from_pretrained(llasa_3b)
model.eval().to(device)
print("Loading XCodec2Model ...")
codec_model_path = "HKUSTAudio/xcodec2"
Codec_model = XCodec2Model.from_pretrained(codec_model_path)
Codec_model.eval().to(device)
print("Models loaded.")
prompt_text_dict = json.load(open("Reference_Voice/text.json", "r", encoding="utf-8"))
####################
# 推理用函数
####################
def extract_speech_ids(speech_tokens_str):
"""
将类似 <|s_23456|> 还原为 int 23456
"""
speech_ids = []
for token_str in speech_tokens_str:
if token_str.startswith("<|s_") and token_str.endswith("|>"):
num_str = token_str[4:-2]
num = int(num_str)
speech_ids.append(num)
else:
print(f"Unexpected token: {token_str}")
return speech_ids
def ids_to_speech_tokens(speech_ids):
speech_tokens_str = []
for speech_id in speech_ids:
speech_tokens_str.append(f"<|s_{speech_id}|>")
return speech_tokens_str
@spaces.GPU
def text2speech(target_text, game, speaker):
"""
将文本转为语音波形,并返回音频文件路径
"""
prompt_wav, sr = sf.read(f"Reference_Voice/{game}/{speaker}/audio.mp3")
prompt_wav = torch.from_numpy(prompt_wav).float().unsqueeze(0)
if prompt_wav.ndim == 3:
prompt_wav = prompt_wav.mean(dim=2)
prompt_text = prompt_text_dict[game][speaker]
input_text = prompt_text + " " + target_text
# read text file in the same directory with name text
with torch.no_grad():
# Encode the prompt wav
vq_code_prompt = Codec_model.encode_code(input_waveform=prompt_wav)
print("Prompt Vq Code Shape:", vq_code_prompt.shape )
vq_code_prompt = vq_code_prompt[0,0,:]
# Convert int 12345 to token <|s_12345|>
speech_ids_prefix = ids_to_speech_tokens(vq_code_prompt)
# 在输入文本前后拼接提示token
formatted_text = f"<|TEXT_UNDERSTANDING_START|>{input_text}<|TEXT_UNDERSTANDING_END|>"
# Tokenize the text and the speech prefix
chat = [
{"role": "user", "content": "Convert the text to speech:" + formatted_text},
{"role": "assistant", "content": "<|SPEECH_GENERATION_START|>" + ''.join(speech_ids_prefix)}
]
input_ids = tokenizer.apply_chat_template(
chat,
tokenize=True,
return_tensors='pt',
continue_final_message=True
)
input_ids = input_ids.to(device)
speech_end_id = tokenizer.convert_tokens_to_ids('<|SPEECH_GENERATION_END|>')
# Generate the speech autoregressively
outputs = model.generate(
input_ids,
max_length=2048, # We trained our model with a max length of 2048
eos_token_id= speech_end_id ,
do_sample=True,
top_p=1,
temperature=0.8,
)
# Extract the speech tokens
generated_ids = outputs[0][input_ids.shape[1]-len(speech_ids_prefix):-1]
speech_tokens = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
# Convert token <|s_23456|> to int 23456
speech_tokens = extract_speech_ids(speech_tokens)
if torch.cuda.is_available():
# Move speech tokens to GPU
speech_tokens = torch.tensor(speech_tokens).cuda().unsqueeze(0).unsqueeze(0)
else:
# If CUDA is not available, keep on CPU
speech_tokens = torch.tensor(speech_tokens).unsqueeze(0).unsqueeze(0)
# Decode the speech tokens to speech waveform
gen_wav = Codec_model.decode_code(speech_tokens)
# 获取音频数据和采样率
audio = gen_wav[0, 0, :].cpu().numpy()
sample_rate = 16000
# 将音频保存到临时文件
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmpfile:
sf.write(tmpfile.name, audio, sample_rate)
audio_path = tmpfile.name
return audio_path
####################
# Gradio 界面
####################
game_choices = [
"HonkaiSR",
"Zenless",
"Genshin"
]
speaker_game_dict = {
"HonkaiSR": [
"Kafka", "Firefly", "Silverwolf"
],
"Zenless": [
"Yixuan", "Miyabi", "Jane"
],
"Genshin": [
"Mavuika", "Navia", "Kokomi", "Furina", "Yoimiya"
]
}
#["puck", "kore"]
if __name__ == "__main__":
with gr.Blocks() as demo:
gr.Markdown("## Text to Speech Generation")
with gr.Row():
game = gr.Dropdown(label="Game", choices=game_choices, value="HonkaiSR")
speaker = gr.Dropdown(label="Speaker", choices=speaker_game_dict[game.value], value="", allow_custom_value=True)
target_text = gr.Textbox(label="Target Text", placeholder="Enter the text you want to convert to speech.")
output_audio = gr.Audio(label="Generated Audio", type="filepath")
def update_speakers(game):
return speaker_game_dict[game]
game.change(update_speakers, inputs=game, outputs=speaker)
text2speech_button = gr.Button("Generate Speech")
text2speech_button.click(text2speech, inputs=[target_text, game, speaker], outputs=output_audio)
demo.launch()
|