File size: 4,668 Bytes
d9259c8
 
 
 
 
 
ba29d97
715d7b7
 
 
 
0efbd32
715d7b7
 
 
 
 
ba29d97
715d7b7
 
ba29d97
715d7b7
 
 
 
ba29d97
 
715d7b7
 
ba29d97
715d7b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba29d97
715d7b7
 
 
 
 
 
 
 
 
d9259c8
 
ba29d97
d9259c8
ba29d97
 
d9259c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba29d97
 
 
 
 
d9259c8
ba29d97
715d7b7
 
 
 
 
 
 
 
 
d9259c8
715d7b7
 
 
 
 
 
d9259c8
715d7b7
 
 
 
 
 
d9259c8
ba29d97
 
 
 
 
 
d9259c8
ba29d97
d9259c8
 
ba29d97
 
 
 
 
d6abccc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import streamlit as st
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np

# Custom Styling
st.markdown(
    """
    <style>
    .stApp {
        background: url('https://static.vecteezy.com/system/resources/thumbnails/002/019/515/small_2x/house-rotating-background-free-video.jpg') no-repeat center center fixed;
        background-size: cover;
    }
    
    .stApp h1 {
        background-color: rgba(0, 0, 128, 0.7); 
        color: #ffffff;
        padding: 10px;
        border-radius: 5px;
        font-size: 2.5em;
        text-align: center;
    }
    .stTextArea textarea {
        background-color: rgba(255, 255, 255, 0.8);
        color: #000000;
        font-size: 1.2em;
    }
    .stButton>button {
        background-color: #4CAF50;
        color: white;
        font-size: 1.2em;
        border-radius: 10px;
        padding: 10px 24px;
        border: none;
    }
    .stButton {
        display: flex;
        justify-content: center;
    }
    .output-container {
        background-color: lightpink;
        color: black;
        font-size: 1.5em;
        padding: 15px;
        border-radius: 10px;
        margin-top: 20px;
        box-shadow: 0 4px 8px rgba(0,0,0,0.1);
        max-width: 600px;
        margin-left: auto;
        margin-right: auto;
        text-align: center;
    }
    </style>
    """,
    unsafe_allow_html=True
)

st.title("House Price Prediction")

# Define ANN Model
class ANN_Model(nn.Module):
    def __init__(self, input_cols=11, hidden0=128, hidden1=128, hidden2=128,
                 hidden3=64, hidden4=64, hidden5=32, hidden6=16, output=1):
        super().__init__()
        self.f_connected0 = nn.Linear(input_cols, hidden0)
        self.f_connected1 = nn.Linear(hidden0, hidden1)
        self.f_connected2 = nn.Linear(hidden1, hidden2)
        self.f_connected3 = nn.Linear(hidden2, hidden3)
        self.f_connected4 = nn.Linear(hidden3, hidden4)
        self.f_connected5 = nn.Linear(hidden4, hidden5)
        self.f_connected6 = nn.Linear(hidden5, hidden6)
        self.out = nn.Linear(hidden6, output)

    def forward(self, x):
        x = F.relu(self.f_connected0(x))
        x = F.relu(self.f_connected1(x))
        x = F.relu(self.f_connected2(x))
        x = F.relu(self.f_connected3(x))
        x = F.relu(self.f_connected4(x))
        x = F.relu(self.f_connected5(x))
        x = F.relu(self.f_connected6(x))
        x = self.out(x)
        return x

# Load the trained model
model = ANN_Model()
try:
    model.load_state_dict(torch.load("ANN_model.pth", map_location=torch.device('cpu')))
    model.eval()
except Exception as e:
    st.error(f"❌ Failed to load the model: {e}")

# Input UI in 3 Columns
col1, col2, col3 = st.columns(3)

with col1:
    year_built = st.number_input("Year Built", min_value=1800, max_value=2025, value=2000)
    num_bedrooms = st.number_input("Number of Bedrooms", min_value=1, max_value=10, value=3)
    garage_type = st.selectbox("Garage Type", ['attached', 'detached', 'none'])
    garage_type_encoded = 2 if garage_type == 'attached' else 1 if garage_type == 'detached' else 0
    has_fireplace = st.selectbox("Has Fireplace", ["True", "False"])
    has_fireplace = 1 if has_fireplace == "True" else 0

with col2:
    num_of_bathrooms = st.number_input("Number of Bathrooms", min_value=0, max_value=10, value=2)
    total_sqft = st.number_input("Total Square Feet", min_value=100, max_value=10000, value=1800)
    garage_sqft = st.number_input("Garage Square Feet", min_value=0, max_value=2000, value=400)
    has_pool = st.selectbox("Has Pool", ["True", "False"])
    has_pool = 1 if has_pool == "True" else 0

with col3:
    has_central_heating = st.selectbox("Has Central Heating", ["True", "False"])
    has_central_heating = 1 if has_central_heating == "True" else 0
    has_central_cooling = st.selectbox("Has Central Cooling", ["True", "False"])
    has_central_cooling = 1 if has_central_cooling == "True" else 0
    zip_code = st.number_input("ZIP Code", min_value=10000, max_value=99999, value=11203)

# Prediction Logic
if st.button('Predict House Price'):
    input_features = np.array([
        year_built, num_bedrooms, total_sqft, garage_type_encoded, garage_sqft,
        has_fireplace, has_pool, has_central_heating, has_central_cooling, zip_code, num_of_bathrooms
    ], dtype=np.float32)

    input_tensor = torch.tensor(input_features).unsqueeze(0)  # Batch dimension

    with torch.no_grad():
        predicted_price = model(input_tensor).item()

    st.markdown(
        f'<div class="output-container">Estimated House Price: <b>${predicted_price:,.2f}</b></div>',
        unsafe_allow_html=True
    )