Spaces:
Runtime error
Runtime error
File size: 7,155 Bytes
1b8a881 808ae02 a29f239 808ae02 fe68a78 bb41efe 808ae02 a29f239 808ae02 a29f239 808ae02 a29f239 808ae02 fe68a78 808ae02 fe68a78 808ae02 fe68a78 808ae02 fe68a78 808ae02 fe68a78 808ae02 bb41efe 808ae02 fe68a78 808ae02 bb41efe 808ae02 fe68a78 808ae02 fe68a78 808ae02 fe68a78 808ae02 fe68a78 808ae02 fe68a78 808ae02 bb41efe fe68a78 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import gradio as gr
import tensorflow as tf
import tensorflow_hub as hub
import os
from preprocessing import preprocess
import numpy as np
import shutil
import cv2
import constants as const
from get_drive_model import ensure_model_download
import atexit # Import atexit module
from simple_salesforce import Salesforce
from datetime import datetime
# Salesforce login
sf = Salesforce(
username='karthikm@sathkrutha.com',
password='Navya@1223',
security_token='FDWBkm0pbrNFkv6bwznbW1SKn',
domain='login' # use 'test' for sandbox, 'login' for production
)
# Salesforce object API name
SALESFORCE_OBJECT = 'Anomaly_Result__c'
def log_to_salesforce(video_path, prediction_text):
try:
result = sf.__getattr__(SALESFORCE_OBJECT).create({
'Video_Name__c': os.path.basename(video_path),
'Prediction_Result__c': prediction_text,
'Timestamp__c': datetime.utcnow().isoformat()
})
print("Salesforce Record Created:", result)
except Exception as e:
print("Salesforce Logging Failed:", e)
# Define the path for the directory
FRAMES_FOLDER = 'static/frames'
# Create the directory if it doesn't exist
os.makedirs(FRAMES_FOLDER, exist_ok=True)
# Ensure models are downloaded
ensure_model_download(const.ANOMALY_DETECTION_MODEL_FILE_ID, 'anomaly_detection_model.h5')
ensure_model_download(const.ANOMALY_CLASSIFICATION_MODEL_FILE_ID, 'anomaly_classification_model.h5')
# Load the model once at startup
first_model = tf.keras.models.load_model('anomaly_detection_model.h5', custom_objects={'KerasLayer': hub.KerasLayer})
second_model = tf.keras.models.load_model('anomaly_classification_model.h5', custom_objects={'KerasLayer': hub.KerasLayer})
UPLOAD_FOLDER = 'uploads'
FRAMES_FOLDER = 'static/frames'
def process_video(filepath):
print(f"Processing video: {filepath}")
frames_for_prediction, frames_for_display = preprocess(filepath)
print(f"Shape of frames for prediction: {frames_for_prediction.shape}")
print(f"Shape of frames for display: {frames_for_display.shape}")
print(first_model.summary())
anomaly_prediction = first_model.predict(frames_for_prediction)[0][0]
print(f"Anomaly Prediction: {anomaly_prediction}")
if anomaly_prediction < 0.5:
classification_prediction = second_model.predict(frames_for_prediction)[0][0]
if classification_prediction < 0.5:
prediction_label = f'The video is an Anomaly type.\nanomaly prediction with {(1-anomaly_prediction)*100:.2f}% confidence\nExplosion Detected with {(1-classification_prediction)*100:.2f}% confidence'
else:
prediction_label = f'The video is an Anomaly type.\nanomaly prediction with {(1-anomaly_prediction)* 100:.2f}% confidence\nViolent Activity Detected with {classification_prediction * 100:.2f}% confidence'
else:
prediction_label = f'No Anomalous Activity with {anomaly_prediction * 100:.2f}% confidence.'
frame_paths = save_frames_to_filesystem(frames_for_display)
# Log prediction to Salesforce
log_to_salesforce(filepath, prediction_label)
return prediction_label, frame_paths
def save_frames_to_filesystem(frames):
frame_paths = []
for i, frame in enumerate(frames):
frame_uint8 = frame.astype(np.uint8)
frame_filename = f'frame_{i}.png'
frame_path = os.path.join(FRAMES_FOLDER, frame_filename)
cv2.imwrite(frame_path, frame_uint8)
frame_paths.append(frame_path)
return frame_paths
def cleanup_uploads_folder():
if os.path.exists(UPLOAD_FOLDER):
for filename in os.listdir(UPLOAD_FOLDER):
file_path = os.path.join(UPLOAD_FOLDER, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
except Exception as e:
print(f'Failed to delete {file_path}. Reason: {e}')
if os.path.exists(FRAMES_FOLDER):
for filename in os.listdir(FRAMES_FOLDER):
file_path = os.path.join(FRAMES_FOLDER, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
except Exception as e:
print(f'Failed to delete {file_path}. Reason: {e}')
print("Uploads and frames folders cleaned")
# Register the cleanup function
atexit.register(cleanup_uploads_folder)
# Create Gradio Interface
iface = gr.Interface(
fn=process_video,
inputs=gr.File(type="filepath"),
outputs=[
gr.Textbox(label="Prediction", elem_id="prediction-box"),
gr.Gallery(label="Video Frames", elem_id="frame-gallery", columns=5, rows=10)
],
title="Anomaly Detection in Videos",
description="Upload a video file and detect anomalies, violent activity, or explosions.",
theme="default",
css="""
body {
background-color: #f0f8ff;
}
.interface {
border-radius: 20px;
background: #ffffff;
padding: 20px;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
}
.interface-title {
color: #333399;
font-size: 32px;
}
.interface-description {
color: #6666cc;
font-size: 18px;
}
#prediction-box {
background: #e6e6ff;
border-radius: 10px;
}
#frame-gallery {
background: #e6e6ff;
border-radius: 10px;
}
.gallery-item img {
border: 2px solid #6666cc;
border-radius: 10px;
}
.btn-primary {
background-color: #6666cc;
border-color: #6666cc;
}
.btn-primary:hover {
background-color: #333399;
border-color: #333399;
}
"""
)
# Additional interfaces for individual triggers
violent_iface = gr.Interface(
fn=process_video,
inputs=gr.File(type="filepath"),
outputs=[
gr.Textbox(label="Prediction"),
gr.Gallery(label="Video Frames", columns=5, rows=10)
],
title="Violent Detection"
)
explosion_iface = gr.Interface(
fn=process_video,
inputs=gr.File(type="filepath"),
outputs=[
gr.Textbox(label="Prediction"),
gr.Gallery(label="Video Frames", columns=5, rows=10)
],
title="Explosion Detection"
)
normal_iface = gr.Interface(
fn=process_video,
inputs=gr.File(type="filepath"),
outputs=[
gr.Textbox(label="Prediction"),
gr.Gallery(label="Video Frames", columns=5, rows=10)
],
title="Normal Detection"
)
# Combine all interfaces into a single application
combined_iface = gr.TabbedInterface([iface, violent_iface, explosion_iface, normal_iface],
["Upload Video", "Violent Detection", "Explosion Detection", "Suspicious Activities"])
if __name__ == "__main__":
combined_iface.launch()
|