|
import ast |
|
|
|
import cv2 |
|
import numpy as np |
|
import pandas as pd |
|
|
|
|
|
def draw_border(img, top_left, bottom_right, color=(0, 255, 0), thickness=10, line_length_x=200, line_length_y=200): |
|
x1, y1 = top_left |
|
x2, y2 = bottom_right |
|
|
|
cv2.line(img, (x1, y1), (x1, y1 + line_length_y), color, thickness) |
|
cv2.line(img, (x1, y1), (x1 + line_length_x, y1), color, thickness) |
|
|
|
cv2.line(img, (x1, y2), (x1, y2 - line_length_y), color, thickness) |
|
cv2.line(img, (x1, y2), (x1 + line_length_x, y2), color, thickness) |
|
|
|
cv2.line(img, (x2, y1), (x2 - line_length_x, y1), color, thickness) |
|
cv2.line(img, (x2, y1), (x2, y1 + line_length_y), color, thickness) |
|
|
|
cv2.line(img, (x2, y2), (x2, y2 - line_length_y), color, thickness) |
|
cv2.line(img, (x2, y2), (x2 - line_length_x, y2), color, thickness) |
|
|
|
return img |
|
|
|
|
|
results = pd.read_csv('./test_interpolated.csv') |
|
|
|
|
|
video_path = 'sample.mp4' |
|
cap = cv2.VideoCapture(video_path) |
|
|
|
fourcc = cv2.VideoWriter_fourcc(*'mp4v') |
|
fps = cap.get(cv2.CAP_PROP_FPS) |
|
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) |
|
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) |
|
out = cv2.VideoWriter('./out.mp4', fourcc, fps, (width, height)) |
|
|
|
license_plate = {} |
|
for car_id in np.unique(results['car_id']): |
|
max_ = np.amax(results[results['car_id'] == car_id]['license_number_score']) |
|
license_plate[car_id] = {'license_crop': None, |
|
'license_plate_number': results[(results['car_id'] == car_id) & |
|
(results['license_number_score'] == max_)]['license_number'].iloc[0]} |
|
cap.set(cv2.CAP_PROP_POS_FRAMES, results[(results['car_id'] == car_id) & |
|
(results['license_number_score'] == max_)]['frame_nmr'].iloc[0]) |
|
ret, frame = cap.read() |
|
|
|
x1, y1, x2, y2 = ast.literal_eval(results[(results['car_id'] == car_id) & |
|
(results['license_number_score'] == max_)]['license_plate_bbox'].iloc[0].replace('[ ', '[').replace(' ', ' ').replace(' ', ' ').replace(' ', ',')) |
|
|
|
license_crop = frame[int(y1):int(y2), int(x1):int(x2), :] |
|
license_crop = cv2.resize(license_crop, (int((x2 - x1) * 400 / (y2 - y1)), 400)) |
|
|
|
license_plate[car_id]['license_crop'] = license_crop |
|
|
|
|
|
frame_nmr = -1 |
|
|
|
cap.set(cv2.CAP_PROP_POS_FRAMES, 0) |
|
|
|
|
|
ret = True |
|
while ret: |
|
ret, frame = cap.read() |
|
frame_nmr += 1 |
|
if ret: |
|
df_ = results[results['frame_nmr'] == frame_nmr] |
|
for row_indx in range(len(df_)): |
|
|
|
car_x1, car_y1, car_x2, car_y2 = ast.literal_eval(df_.iloc[row_indx]['car_bbox'].replace('[ ', '[').replace(' ', ' ').replace(' ', ' ').replace(' ', ',')) |
|
draw_border(frame, (int(car_x1), int(car_y1)), (int(car_x2), int(car_y2)), (0, 255, 0), 25, |
|
line_length_x=200, line_length_y=200) |
|
|
|
|
|
x1, y1, x2, y2 = ast.literal_eval(df_.iloc[row_indx]['license_plate_bbox'].replace('[ ', '[').replace(' ', ' ').replace(' ', ' ').replace(' ', ',')) |
|
cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 12) |
|
|
|
|
|
license_crop = license_plate[df_.iloc[row_indx]['car_id']]['license_crop'] |
|
|
|
H, W, _ = license_crop.shape |
|
|
|
try: |
|
frame[int(car_y1) - H - 100:int(car_y1) - 100, |
|
int((car_x2 + car_x1 - W) / 2):int((car_x2 + car_x1 + W) / 2), :] = license_crop |
|
|
|
frame[int(car_y1) - H - 400:int(car_y1) - H - 100, |
|
int((car_x2 + car_x1 - W) / 2):int((car_x2 + car_x1 + W) / 2), :] = (255, 255, 255) |
|
|
|
(text_width, text_height), _ = cv2.getTextSize( |
|
license_plate[df_.iloc[row_indx]['car_id']]['license_plate_number'], |
|
cv2.FONT_HERSHEY_SIMPLEX, |
|
4.3, |
|
17) |
|
|
|
cv2.putText(frame, |
|
license_plate[df_.iloc[row_indx]['car_id']]['license_plate_number'], |
|
(int((car_x2 + car_x1 - text_width) / 2), int(car_y1 - H - 250 + (text_height / 2))), |
|
cv2.FONT_HERSHEY_SIMPLEX, |
|
4.3, |
|
(0, 0, 0), |
|
17) |
|
|
|
except: |
|
pass |
|
|
|
out.write(frame) |
|
frame = cv2.resize(frame, (1280, 720)) |
|
|
|
|
|
|
|
|
|
out.release() |
|
cap.release() |