import ast import cv2 import numpy as np import pandas as pd def draw_border(img, top_left, bottom_right, color=(0, 255, 0), thickness=10, line_length_x=200, line_length_y=200): x1, y1 = top_left x2, y2 = bottom_right cv2.line(img, (x1, y1), (x1, y1 + line_length_y), color, thickness) #-- top-left cv2.line(img, (x1, y1), (x1 + line_length_x, y1), color, thickness) cv2.line(img, (x1, y2), (x1, y2 - line_length_y), color, thickness) #-- bottom-left cv2.line(img, (x1, y2), (x1 + line_length_x, y2), color, thickness) cv2.line(img, (x2, y1), (x2 - line_length_x, y1), color, thickness) #-- top-right cv2.line(img, (x2, y1), (x2, y1 + line_length_y), color, thickness) cv2.line(img, (x2, y2), (x2, y2 - line_length_y), color, thickness) #-- bottom-right cv2.line(img, (x2, y2), (x2 - line_length_x, y2), color, thickness) return img results = pd.read_csv('./test_interpolated.csv') # load video video_path = 'sample.mp4' cap = cv2.VideoCapture(video_path) fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Specify the codec fps = cap.get(cv2.CAP_PROP_FPS) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) out = cv2.VideoWriter('./out.mp4', fourcc, fps, (width, height)) license_plate = {} for car_id in np.unique(results['car_id']): max_ = np.amax(results[results['car_id'] == car_id]['license_number_score']) license_plate[car_id] = {'license_crop': None, 'license_plate_number': results[(results['car_id'] == car_id) & (results['license_number_score'] == max_)]['license_number'].iloc[0]} cap.set(cv2.CAP_PROP_POS_FRAMES, results[(results['car_id'] == car_id) & (results['license_number_score'] == max_)]['frame_nmr'].iloc[0]) ret, frame = cap.read() x1, y1, x2, y2 = ast.literal_eval(results[(results['car_id'] == car_id) & (results['license_number_score'] == max_)]['license_plate_bbox'].iloc[0].replace('[ ', '[').replace(' ', ' ').replace(' ', ' ').replace(' ', ',')) license_crop = frame[int(y1):int(y2), int(x1):int(x2), :] license_crop = cv2.resize(license_crop, (int((x2 - x1) * 400 / (y2 - y1)), 400)) license_plate[car_id]['license_crop'] = license_crop frame_nmr = -1 cap.set(cv2.CAP_PROP_POS_FRAMES, 0) # read frames ret = True while ret: ret, frame = cap.read() frame_nmr += 1 if ret: df_ = results[results['frame_nmr'] == frame_nmr] for row_indx in range(len(df_)): # draw car car_x1, car_y1, car_x2, car_y2 = ast.literal_eval(df_.iloc[row_indx]['car_bbox'].replace('[ ', '[').replace(' ', ' ').replace(' ', ' ').replace(' ', ',')) draw_border(frame, (int(car_x1), int(car_y1)), (int(car_x2), int(car_y2)), (0, 255, 0), 25, line_length_x=200, line_length_y=200) # draw license plate x1, y1, x2, y2 = ast.literal_eval(df_.iloc[row_indx]['license_plate_bbox'].replace('[ ', '[').replace(' ', ' ').replace(' ', ' ').replace(' ', ',')) cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 12) # crop license plate license_crop = license_plate[df_.iloc[row_indx]['car_id']]['license_crop'] H, W, _ = license_crop.shape try: frame[int(car_y1) - H - 100:int(car_y1) - 100, int((car_x2 + car_x1 - W) / 2):int((car_x2 + car_x1 + W) / 2), :] = license_crop frame[int(car_y1) - H - 400:int(car_y1) - H - 100, int((car_x2 + car_x1 - W) / 2):int((car_x2 + car_x1 + W) / 2), :] = (255, 255, 255) (text_width, text_height), _ = cv2.getTextSize( license_plate[df_.iloc[row_indx]['car_id']]['license_plate_number'], cv2.FONT_HERSHEY_SIMPLEX, 4.3, 17) cv2.putText(frame, license_plate[df_.iloc[row_indx]['car_id']]['license_plate_number'], (int((car_x2 + car_x1 - text_width) / 2), int(car_y1 - H - 250 + (text_height / 2))), cv2.FONT_HERSHEY_SIMPLEX, 4.3, (0, 0, 0), 17) except: pass out.write(frame) frame = cv2.resize(frame, (1280, 720)) # cv2.imshow('frame', frame) # cv2.waitKey(0) out.release() cap.release()