karthikmn's picture
Update app.py
793d787 verified
import gradio as gr
import numpy as np
import cv2
from ultralytics import YOLO
from PIL import Image
import pandas as pd
# Model labels
model1Labels = {0: 'single_number_plate', 1: 'double_number_plate'}
model2Labels = {
0: '0', 1: '1', 2: '2', 3: '3', 4: '4', 5: '5', 6: '6', 7: '7', 8: '8', 9: '9', 10: 'A', 11: 'B', 12: 'C',
13: 'D', 14: 'E', 15: 'F', 16: 'G', 17: 'H', 18: 'I', 19: 'J', 20: 'K', 21: 'L', 22: 'M', 23: 'N', 24: 'O',
25: 'P', 26: 'Q', 27: 'R', 28: 'S', 29: 'T', 30: 'U', 31: 'V', 32: 'W', 33: 'X', 34: 'Y', 35: 'Z'
}
# Load models
model = YOLO("model/LP-detection.pt")
model2 = YOLO("model/Charcter-LP.pt")
def prediction(image):
result = model.predict(source=image, conf=0.5)
boxes = result[0].boxes
height = boxes.xywh
crd = boxes.data
n = len(crd)
lp_number = []
img_lp_final = None
for i in range(n):
ht = int(height[i][3])
c = int(crd[i][5])
xmin = int(crd[i][0])
ymin = int(crd[i][1])
xmax = int(crd[i][2])
ymax = int(crd[i][3])
img_lp = image[ymin:ymax, xmin:xmax]
img_lp_final = img_lp.copy() # Store the cropped image for display
cv2.rectangle(image, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)
h = np.median(ht)
# Second Model Prediction
result2 = model2.predict(source=img_lp, conf=0.25)
boxes_ocr = result2[0].boxes
data2 = boxes_ocr.data
n2 = len(data2)
xaxis0, xaxis11, xaxis12 = [], [], []
label0, label11, label12 = [], [], []
numberPlate = ""
if c == 0: # Single line license plate
for i in range(n2):
x = int(data2[i][2])
xaxis0.append(x)
l = int(data2[i][5])
label0.append(l)
# Sort characters by x-axis for single line
sorted_labels = [label0[i] for i in np.argsort(xaxis0)]
numberPlate = ''.join([model2Labels.get(l) for l in sorted_labels])
lp_number.append(numberPlate)
elif c == 1: # Double line license plate
for i in range(n2):
x = int(data2[i][0])
y = int(data2[i][3])
l = int(data2[i][5])
if y < (h / 2):
xaxis11.append(x)
label11.append(l)
else:
xaxis12.append(x)
label12.append(l)
# Sort characters by x-axis for double line (upper and lower separately)
sorted_labels11 = [label11[i] for i in np.argsort(xaxis11)]
sorted_labels12 = [label12[i] for i in np.argsort(xaxis12)]
numberPlate = ''.join([model2Labels.get(l) for l in sorted_labels11 + sorted_labels12])
lp_number.append(numberPlate)
return lp_number, img_lp_final
def process_video(video_file):
# Open the video
cap = cv2.VideoCapture(video_file)
license_plate_texts = []
processed_frames = []
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
license_plate_text, cropped_plate_img = prediction(frame)
license_plate_texts.append(" ".join(license_plate_text)) # Join the list of texts into a single string
processed_frames.append(cropped_plate_img)
# Save detected texts to Excel
df = pd.DataFrame(license_plate_texts, columns=["License Plate"])
df.to_excel("detected_license_plates.xlsx", index=False)
# Save processed video with license plates highlighted
output_video_path = 'processed_video.mp4'
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Codec for MP4
out = cv2.VideoWriter(output_video_path, fourcc, 20.0, (frame.shape[1], frame.shape[0]))
for processed_frame in processed_frames:
out.write(processed_frame)
cap.release()
out.release()
return output_video_path, "detected_license_plates.xlsx"
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# πŸš— License Plate Recognition (Video Upload)")
gr.Markdown("Upload a video to get the license number of vehicles detected in each frame.")
with gr.Row():
video_input = gr.File(label="Upload Video", type="filepath") # Corrected the file type
video_output = gr.Video(label="Processed Video")
excel_output = gr.File(label="Excel File with Detected License Plates")
video_input.upload(process_video, inputs=video_input, outputs=[video_output, excel_output])
demo.launch()