import gradio as gr import numpy as np import cv2 from ultralytics import YOLO from PIL import Image import pandas as pd # Model labels model1Labels = {0: 'single_number_plate', 1: 'double_number_plate'} model2Labels = { 0: '0', 1: '1', 2: '2', 3: '3', 4: '4', 5: '5', 6: '6', 7: '7', 8: '8', 9: '9', 10: 'A', 11: 'B', 12: 'C', 13: 'D', 14: 'E', 15: 'F', 16: 'G', 17: 'H', 18: 'I', 19: 'J', 20: 'K', 21: 'L', 22: 'M', 23: 'N', 24: 'O', 25: 'P', 26: 'Q', 27: 'R', 28: 'S', 29: 'T', 30: 'U', 31: 'V', 32: 'W', 33: 'X', 34: 'Y', 35: 'Z' } # Load models model = YOLO("model/LP-detection.pt") model2 = YOLO("model/Charcter-LP.pt") def prediction(image): result = model.predict(source=image, conf=0.5) boxes = result[0].boxes height = boxes.xywh crd = boxes.data n = len(crd) lp_number = [] img_lp_final = None for i in range(n): ht = int(height[i][3]) c = int(crd[i][5]) xmin = int(crd[i][0]) ymin = int(crd[i][1]) xmax = int(crd[i][2]) ymax = int(crd[i][3]) img_lp = image[ymin:ymax, xmin:xmax] img_lp_final = img_lp.copy() # Store the cropped image for display cv2.rectangle(image, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2) h = np.median(ht) # Second Model Prediction result2 = model2.predict(source=img_lp, conf=0.25) boxes_ocr = result2[0].boxes data2 = boxes_ocr.data n2 = len(data2) xaxis0, xaxis11, xaxis12 = [], [], [] label0, label11, label12 = [], [], [] numberPlate = "" if c == 0: # Single line license plate for i in range(n2): x = int(data2[i][2]) xaxis0.append(x) l = int(data2[i][5]) label0.append(l) # Sort characters by x-axis for single line sorted_labels = [label0[i] for i in np.argsort(xaxis0)] numberPlate = ''.join([model2Labels.get(l) for l in sorted_labels]) lp_number.append(numberPlate) elif c == 1: # Double line license plate for i in range(n2): x = int(data2[i][0]) y = int(data2[i][3]) l = int(data2[i][5]) if y < (h / 2): xaxis11.append(x) label11.append(l) else: xaxis12.append(x) label12.append(l) # Sort characters by x-axis for double line (upper and lower separately) sorted_labels11 = [label11[i] for i in np.argsort(xaxis11)] sorted_labels12 = [label12[i] for i in np.argsort(xaxis12)] numberPlate = ''.join([model2Labels.get(l) for l in sorted_labels11 + sorted_labels12]) lp_number.append(numberPlate) return lp_number, img_lp_final def process_video(video_file): # Open the video cap = cv2.VideoCapture(video_file) license_plate_texts = [] processed_frames = [] while cap.isOpened(): ret, frame = cap.read() if not ret: break license_plate_text, cropped_plate_img = prediction(frame) license_plate_texts.append(" ".join(license_plate_text)) # Join the list of texts into a single string processed_frames.append(cropped_plate_img) # Save detected texts to Excel df = pd.DataFrame(license_plate_texts, columns=["License Plate"]) df.to_excel("detected_license_plates.xlsx", index=False) # Save processed video with license plates highlighted output_video_path = 'processed_video.mp4' fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Codec for MP4 out = cv2.VideoWriter(output_video_path, fourcc, 20.0, (frame.shape[1], frame.shape[0])) for processed_frame in processed_frames: out.write(processed_frame) cap.release() out.release() return output_video_path, "detected_license_plates.xlsx" # Gradio interface with gr.Blocks() as demo: gr.Markdown("# 🚗 License Plate Recognition (Video Upload)") gr.Markdown("Upload a video to get the license number of vehicles detected in each frame.") with gr.Row(): video_input = gr.File(label="Upload Video", type="filepath") # Corrected the file type video_output = gr.Video(label="Processed Video") excel_output = gr.File(label="Excel File with Detected License Plates") video_input.upload(process_video, inputs=video_input, outputs=[video_output, excel_output]) demo.launch()