Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | |
import torch | |
import torchaudio | |
# Load the pre-trained Wav2Vec 2.0 model and processor from Hugging Face | |
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h") | |
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h") | |
# Function to convert speech to text | |
def speech_to_text(audio_file): | |
# Load the audio file | |
audio_input, _ = torchaudio.load(audio_file) | |
# Preprocess the audio input (e.g., resample, normalize, etc.) | |
input_values = processor(audio_input, return_tensors="pt").input_values | |
# Perform speech-to-text (CTC Decoding) | |
with torch.no_grad(): | |
logits = model(input_values).logits | |
predicted_ids = torch.argmax(logits, dim=-1) | |
# Decode the predicted ids to text | |
transcription = processor.decode(predicted_ids[0]) | |
return transcription | |
# Set up the Gradio interface | |
iface = gr.Interface( | |
fn=speech_to_text, # Function to be executed | |
inputs=gr.Audio(type="filepath"), # Correct type for file upload | |
outputs=gr.Textbox(), # Display transcription in a text box | |
title="Speech-to-Text Analyzer for Lectimport gradio as gr | |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | |
import torch | |
import torchaudio | |
# Load the pre-trained Wav2Vec 2.0 model and processor from Hugging Face | |
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h") | |
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h") | |
# Function to convert speech to text | |
def speech_to_text(audio_file): | |
# Load the audio file | |
audio_input, _ = torchaudio.load(audio_file) | |
# Preprocess the audio input (e.g., resample, normalize, etc.) | |
input_values = processor(audio_input, return_tensors="pt").input_values | |
# Perform speech-to-text (CTC Decoding) | |
with torch.no_grad(): | |
logits = model(input_values).logits | |
predicted_ids = torch.argmax(logits, dim=-1) | |
# Decode the predicted ids to text | |
transcription = processor.decode(predicted_ids[0]) | |
return transcription | |
# Set up the Gradio interface | |
iface = gr.Interface( | |
fn=speech_to_text, # Function to be executed | |
inputs=gr.Audio(type="filepath"), # Correct type for file upload | |
outputs=gr.Textbox(), # Display transcription in a text box | |
title="Speech-to-Text Analyzer for Lecture Notes", | |
description="Upload an audio file (e.g., lecture recording) to get the transcription of the speech." | |
) | |
# Launch the interface | |
iface.launch() | |
ure Notes", | |
description="Upload an audio file (e.g., lecture recording) to get the transcription of the speech." | |
) | |
# Launch the interface | |
iface.launch() | |