from transformers import pipeline from PIL import Image import io from utils import explain_prediction, get_treatment_and_fertilizer, check_alert classifier = pipeline("image-classification", model="huggingface/your-model") def diagnose_disease(image_bytes): image = Image.open(io.BytesIO(image_bytes)) prediction = classifier(image)[0] label = prediction['label'] score = prediction['score'] explanation = explain_prediction(label) treatment, fertilizer = get_treatment_and_fertilizer(label) alert = check_alert(label) return { "prediction": label, "confidence": score, "explanation": explanation, "treatment": treatment, "fertilizer": fertilizer, "alert": alert }