# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. import torch try: import flash_attn_interface FLASH_ATTN_3_AVAILABLE = True except ModuleNotFoundError: FLASH_ATTN_3_AVAILABLE = False try: import flash_attn FLASH_ATTN_2_AVAILABLE = True except ModuleNotFoundError: FLASH_ATTN_2_AVAILABLE = False import warnings __all__ = [ 'flash_attention', 'attention', ] import xformers.ops as xops from xformers.ops import memory_efficient_attention, fmha def flash_attention( q, k, v, q_lens=None, k_lens=None, dropout_p=0., softmax_scale=None, q_scale=None, causal=False, window_size=(-1, -1), deterministic=False, dtype=torch.float16, version=None, ): """ q: [B, Lq, Nq, C1]. k: [B, Lk, Nk, C1]. v: [B, Lk, Nk, C2]. Nq must be divisible by Nk. q_lens: [B]. k_lens: [B]. dropout_p: float. Dropout probability. softmax_scale: float. The scaling of QK^T before applying softmax. causal: bool. Whether to apply causal attention mask. window_size: (left right). If not (-1, -1), apply sliding window local attention. deterministic: bool. If True, slightly slower and uses more memory. dtype: torch.dtype. Apply when dtype of q/k/v is not float16/bfloat16. """ half_dtypes = (torch.float16, torch.bfloat16) assert dtype in half_dtypes, f"dtype must be float16 or bfloat16, got {dtype}" assert q.device.type == "cuda" and q.size(-1) <= 256 b, lq, lk, out_dtype = q.size(0), q.size(1), k.size(1), q.dtype def half(x): return x if x.dtype in half_dtypes else x.to(dtype) # 预处理查询 if q_lens is None: q = half(q.flatten(0, 1)) # [B*Lq, Nq, C1] q_lens = torch.full((b,), lq, dtype=torch.int32, device=q.device) else: q = half(torch.cat([u[:v] for u, v in zip(q, q_lens)], dim=0)) # 预处理键和值 if k_lens is None: k = half(k.flatten(0, 1)) v = half(v.flatten(0, 1)) k_lens = torch.full((b,), lk, dtype=torch.int32, device=k.device) else: k = half(torch.cat([u[:v] for u, v in zip(k, k_lens)], dim=0)) v = half(torch.cat([u[:v] for u, v in zip(v, k_lens)], dim=0)) # 确保数据类型一致 q = q.to(dtype) k = k.to(dtype) v = v.to(dtype) if q_scale is not None: q = q * q_scale # 调整键和值的头数以匹配查询 n_q_heads = q.size(1) n_k_heads = k.size(1) if n_k_heads != n_q_heads: assert n_q_heads % n_k_heads == 0, "Nq must be divisible by Nk" repeat_factor = n_q_heads // n_k_heads k = k.repeat(1, repeat_factor, 1) v = v.repeat(1, repeat_factor, 1) # if window_size != (-1, -1): # raise NotImplementedError("Sliding window attention not supported with xFormers") window_size = (-1, -1) # 生成块对角掩码 q_lens_list = q_lens.cpu().tolist() k_lens_list = k_lens.cpu().tolist() if causal: attn_bias = fmha.attn_bias.BlockDiagonalCausalMask.from_seqlens(q_seqlen=q_lens_list) else: attn_bias = fmha.attn_bias.BlockDiagonalMask.from_seqlens(q_seqlen=q_lens_list, kv_seqlen=k_lens_list) # 添加虚拟批次维度以适应xFormers接口 q = q.unsqueeze(0) # [1, sum_q, nh, hd] k = k.unsqueeze(0) v = v.unsqueeze(0) # 调用xFormers的高效注意力实现 x = xops.memory_efficient_attention( q, k, v, attn_bias=attn_bias, p=dropout_p, scale=softmax_scale, # deterministic=deterministic # xFormers可能不支持此参数 ) # 移除虚拟批次维度并恢复原始形状 x = x.squeeze(0).unflatten(0, (b, lq)) # [B, Lq, Nq, C2] return x.to(out_dtype) def attention( q, k, v, q_lens=None, k_lens=None, dropout_p=0., softmax_scale=None, q_scale=None, causal=False, window_size=(-1, -1), deterministic=False, dtype=torch.bfloat16, fa_version=None, ): if FLASH_ATTN_2_AVAILABLE or FLASH_ATTN_3_AVAILABLE: return flash_attention( q=q, k=k, v=v, q_lens=q_lens, k_lens=k_lens, dropout_p=dropout_p, softmax_scale=softmax_scale, q_scale=q_scale, causal=causal, window_size=window_size, deterministic=deterministic, dtype=dtype, version=fa_version, ) else: if q_lens is not None or k_lens is not None: warnings.warn( 'Padding mask is disabled when using scaled_dot_product_attention. It can have a significant impact on performance.' ) attn_mask = None q = q.transpose(1, 2).to(dtype) k = k.transpose(1, 2).to(dtype) v = v.transpose(1, 2).to(dtype) out = torch.nn.functional.scaled_dot_product_attention( q, k, v, attn_mask=attn_mask, is_causal=causal, dropout_p=dropout_p) out = out.transpose(1, 2).contiguous() return out