Spaces:
Running
Running
File size: 26,401 Bytes
4118a69 bee94f0 4118a69 bee94f0 4118a69 bee94f0 a562ac5 afcace3 4118a69 bee94f0 c863762 a562ac5 afcace3 bee94f0 00f6edb 8563208 00f6edb a34ce63 00f6edb a34ce63 8563208 a34ce63 00f6edb a562ac5 00f6edb a34ce63 8563208 a34ce63 8563208 a34ce63 00f6edb a34ce63 8563208 00f6edb 26f31fb 8563208 a34ce63 8563208 a34ce63 8563208 26f31fb 8563208 26f31fb 00f6edb 4118a69 8563208 4118a69 a562ac5 4118a69 8563208 afcace3 4118a69 afcace3 a6fc424 4118a69 5b1cb99 8563208 4d7462c 8563208 4d7462c 8563208 4d7462c 8563208 4d7462c a562ac5 4118a69 a562ac5 bee94f0 8563208 4118a69 8563208 4118a69 8563208 bee94f0 8563208 4762ab6 8563208 a562ac5 8563208 a562ac5 8563208 a562ac5 8563208 a562ac5 8563208 a562ac5 8563208 4762ab6 a562ac5 8563208 a562ac5 8563208 a562ac5 8563208 4762ab6 8563208 bee94f0 8563208 3c02b3d a562ac5 bee94f0 4762ab6 bee94f0 4762ab6 8563208 a5586dc a562ac5 086a5ef bee94f0 a5586dc 8563208 a5586dc 8563208 a562ac5 a5586dc 8563208 a5586dc 8563208 a5586dc 8563208 a562ac5 4762ab6 bee94f0 a562ac5 bee94f0 4762ab6 8563208 bee94f0 8563208 a562ac5 8563208 d8fffd2 8563208 4762ab6 d8fffd2 bee94f0 8563208 afcace3 8563208 a562ac5 8563208 afcace3 a562ac5 afcace3 a562ac5 8563208 a562ac5 bee94f0 8563208 4118a69 4762ab6 8563208 bee94f0 4118a69 8563208 4118a69 3c02b3d 8563208 a562ac5 4762ab6 b7ec9d2 4118a69 086a5ef 4762ab6 8563208 4118a69 086a5ef 8563208 a562ac5 8563208 086a5ef 8563208 a562ac5 8563208 086a5ef 8563208 a562ac5 8563208 086a5ef a562ac5 086a5ef 8563208 bee94f0 8563208 086a5ef bee94f0 086a5ef 1c1a410 a562ac5 1c1a410 a562ac5 1c1a410 8563208 1c1a410 a562ac5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
import json
import time
import math
import asyncio
from typing import List, Dict, Any, Callable, Union, Optional
from fastapi.responses import JSONResponse, StreamingResponse
from google.auth.transport.requests import Request as AuthRequest
from google.genai import types
from openai import AsyncOpenAI
from models import OpenAIRequest, OpenAIMessage
from message_processing import (
convert_to_openai_format,
convert_chunk_to_openai,
extract_reasoning_by_tags,
_create_safety_ratings_html
)
import config as app_config
from config import VERTEX_REASONING_TAG
class StreamingReasoningProcessor:
def __init__(self, tag_name: str = VERTEX_REASONING_TAG):
self.tag_name = tag_name
self.open_tag = f"<{tag_name}>"
self.close_tag = f"</{tag_name}>"
self.tag_buffer = ""
self.inside_tag = False
self.reasoning_buffer = ""
self.partial_tag_buffer = ""
def process_chunk(self, content: str) -> tuple[str, str]:
if self.partial_tag_buffer:
content = self.partial_tag_buffer + content
self.partial_tag_buffer = ""
self.tag_buffer += content
processed_content = ""
current_reasoning = ""
while self.tag_buffer:
if not self.inside_tag:
open_pos = self.tag_buffer.find(self.open_tag)
if open_pos == -1:
partial_match = False
for i in range(1, min(len(self.open_tag), len(self.tag_buffer) + 1)):
if self.tag_buffer[-i:] == self.open_tag[:i]:
partial_match = True
if len(self.tag_buffer) > i:
processed_content += self.tag_buffer[:-i]
self.partial_tag_buffer = self.tag_buffer[-i:]
else: self.partial_tag_buffer = self.tag_buffer
self.tag_buffer = ""
break
if not partial_match:
processed_content += self.tag_buffer
self.tag_buffer = ""
break
else:
processed_content += self.tag_buffer[:open_pos]
self.tag_buffer = self.tag_buffer[open_pos + len(self.open_tag):]
self.inside_tag = True
else:
close_pos = self.tag_buffer.find(self.close_tag)
if close_pos == -1:
partial_match = False
for i in range(1, min(len(self.close_tag), len(self.tag_buffer) + 1)):
if self.tag_buffer[-i:] == self.close_tag[:i]:
partial_match = True
if len(self.tag_buffer) > i:
new_reasoning = self.tag_buffer[:-i]
self.reasoning_buffer += new_reasoning
if new_reasoning: current_reasoning = new_reasoning
self.partial_tag_buffer = self.tag_buffer[-i:]
else: self.partial_tag_buffer = self.tag_buffer
self.tag_buffer = ""
break
if not partial_match:
if self.tag_buffer:
self.reasoning_buffer += self.tag_buffer
current_reasoning = self.tag_buffer
self.tag_buffer = ""
break
else:
final_reasoning_chunk = self.tag_buffer[:close_pos]
self.reasoning_buffer += final_reasoning_chunk
if final_reasoning_chunk: current_reasoning = final_reasoning_chunk
self.reasoning_buffer = ""
self.tag_buffer = self.tag_buffer[close_pos + len(self.close_tag):]
self.inside_tag = False
return processed_content, current_reasoning
def flush_remaining(self) -> tuple[str, str]:
remaining_content, remaining_reasoning = "", ""
if self.partial_tag_buffer:
remaining_content += self.partial_tag_buffer
self.partial_tag_buffer = ""
if not self.inside_tag:
if self.tag_buffer: remaining_content += self.tag_buffer
else:
if self.reasoning_buffer: remaining_reasoning = self.reasoning_buffer
if self.tag_buffer: remaining_content += self.tag_buffer
self.inside_tag = False
self.tag_buffer, self.reasoning_buffer = "", ""
return remaining_content, remaining_reasoning
def create_openai_error_response(status_code: int, message: str, error_type: str) -> Dict[str, Any]:
return {"error": {"message": message, "type": error_type, "code": status_code, "param": None}}
def create_generation_config(request: OpenAIRequest) -> Dict[str, Any]:
config: Dict[str, Any] = {}
if request.temperature is not None: config["temperature"] = request.temperature
if request.max_tokens is not None: config["max_output_tokens"] = request.max_tokens
if request.top_p is not None: config["top_p"] = request.top_p
if request.top_k is not None: config["top_k"] = request.top_k
if request.stop is not None: config["stop_sequences"] = request.stop
if request.seed is not None: config["seed"] = request.seed
if request.n is not None: config["candidate_count"] = request.n
safety_threshold = "BLOCK_NONE" if app_config.SAFETY_SCORE else "BLOCK_ONLY_HIGH"
config["safety_settings"] = [
types.SafetySetting(category="HARM_CATEGORY_HATE_SPEECH", threshold=safety_threshold),
types.SafetySetting(category="HARM_CATEGORY_DANGEROUS_CONTENT", threshold=safety_threshold),
types.SafetySetting(category="HARM_CATEGORY_SEXUALLY_EXPLICIT", threshold=safety_threshold),
types.SafetySetting(category="HARM_CATEGORY_HARASSMENT", threshold=safety_threshold),
types.SafetySetting(category="HARM_CATEGORY_CIVIC_INTEGRITY", threshold=safety_threshold),
types.SafetySetting(category="HARM_CATEGORY_UNSPECIFIED", threshold=safety_threshold),
types.SafetySetting(category="HARM_CATEGORY_IMAGE_HATE", threshold=safety_threshold),
types.SafetySetting(category="HARM_CATEGORY_IMAGE_DANGEROUS_CONTENT", threshold=safety_threshold),
types.SafetySetting(category="HARM_CATEGORY_IMAGE_HARASSMENT", threshold=safety_threshold),
types.SafetySetting(category="HARM_CATEGORY_IMAGE_SEXUALLY_EXPLICIT", threshold=safety_threshold),
]
# config["thinking_config"] = {"include_thoughts": True}
# 1. Add tools (function declarations)
function_declarations = []
if request.tools:
for tool in request.tools:
if tool.get("type") == "function":
# func_def = tool.get("function")
func_def = tool
if func_def:
# Extract only the fields accepted by the Gemini API
declaration = {
"name": func_def.get("name"),
"description": func_def.get("description"),
}
# Get parameters and remove the $schema field if it exists
parameters = func_def.get("parameters")
if isinstance(parameters, dict) and "$schema" in parameters:
parameters = parameters.copy()
del parameters["$schema"]
if parameters is not None:
declaration["parameters"] = parameters
# Remove keys with None values to keep the payload clean
declaration = {k: v for k, v in declaration.items() if v is not None}
if declaration.get("name"): # Ensure name exists
function_declarations.append(declaration)
if function_declarations:
config["tools"] = [{"function_declarations": function_declarations}]
# 2. Add tool_config (based on tool_choice)
tool_config = None
if request.tool_choice:
choice = request.tool_choice
mode = None
allowed_functions = None
if isinstance(choice, str):
if choice == "none":
mode = "NONE"
elif choice == "auto":
mode = "AUTO"
elif isinstance(choice, dict) and choice.get("type") == "function":
func_name = choice.get("function", {}).get("name")
if func_name:
mode = "ANY" # 'ANY' mode is used to force a specific function call
allowed_functions = [func_name]
# If a valid mode was parsed, build the tool_config
if mode:
config_dict = {"mode": mode}
if allowed_functions:
config_dict["allowed_function_names"] = allowed_functions
tool_config = {"function_calling_config": config_dict}
if tool_config:
config["tool_config"] = tool_config
return config
def is_gemini_response_valid(response: Any) -> bool:
if response is None: return False
if hasattr(response, 'text') and isinstance(response.text, str) and response.text.strip(): return True
if hasattr(response, 'candidates') and response.candidates:
for cand in response.candidates:
if hasattr(cand, 'text') and isinstance(cand.text, str) and cand.text.strip(): return True
if hasattr(cand, 'content') and hasattr(cand.content, 'parts') and cand.content.parts:
for part in cand.content.parts:
if hasattr(part, 'function_call'): return True
if hasattr(part, 'text') and isinstance(getattr(part, 'text', None), str) and getattr(part, 'text', '').strip(): return True
return False
async def _chunk_openai_response_dict_for_sse(
openai_response_dict: Dict[str, Any],
response_id_override: Optional[str] = None,
model_name_override: Optional[str] = None
):
resp_id = response_id_override or openai_response_dict.get("id", f"chatcmpl-fakestream-{int(time.time())}")
model_name = model_name_override or openai_response_dict.get("model", "unknown")
created_time = openai_response_dict.get("created", int(time.time()))
choices = openai_response_dict.get("choices", [])
if not choices:
yield f"data: {json.dumps({'id': resp_id, 'object': 'chat.completion.chunk', 'created': created_time, 'model': model_name, 'choices': [{'index': 0, 'delta': {}, 'finish_reason': 'error'}]})}\n\n"
yield "data: [DONE]\n\n"
return
for choice_idx, choice in enumerate(choices):
message = choice.get("message", {})
final_finish_reason = choice.get("finish_reason", "stop")
if message.get("tool_calls"):
tool_calls_list = message.get("tool_calls", [])
for tc_item_idx, tool_call_item in enumerate(tool_calls_list):
delta_tc_start = {
"tool_calls": [{
"index": tc_item_idx,
"id": tool_call_item["id"],
"type": "function",
"function": {"name": tool_call_item["function"]["name"], "arguments": ""}
}]
}
yield f"data: {json.dumps({'id': resp_id, 'object': 'chat.completion.chunk', 'created': created_time, 'model': model_name, 'choices': [{'index': choice_idx, 'delta': delta_tc_start, 'finish_reason': None}]})}\n\n"
await asyncio.sleep(0.01)
delta_tc_args = {
"tool_calls": [{
"index": tc_item_idx,
"id": tool_call_item["id"],
"function": {"arguments": tool_call_item["function"]["arguments"]}
}]
}
yield f"data: {json.dumps({'id': resp_id, 'object': 'chat.completion.chunk', 'created': created_time, 'model': model_name, 'choices': [{'index': choice_idx, 'delta': delta_tc_args, 'finish_reason': None}]})}\n\n"
await asyncio.sleep(0.01)
elif message.get("content") is not None or message.get("reasoning_content") is not None :
reasoning_content = message.get("reasoning_content", "")
actual_content = message.get("content")
if reasoning_content:
delta_reasoning = {"reasoning_content": reasoning_content}
yield f"data: {json.dumps({'id': resp_id, 'object': 'chat.completion.chunk', 'created': created_time, 'model': model_name, 'choices': [{'index': choice_idx, 'delta': delta_reasoning, 'finish_reason': None}]})}\n\n"
if actual_content is not None: await asyncio.sleep(0.05)
content_to_chunk = actual_content if actual_content is not None else ""
if actual_content is not None:
chunk_size = max(1, math.ceil(len(content_to_chunk) / 10)) if content_to_chunk else 1
if not content_to_chunk and not reasoning_content :
yield f"data: {json.dumps({'id': resp_id, 'object': 'chat.completion.chunk', 'created': created_time, 'model': model_name, 'choices': [{'index': choice_idx, 'delta': {'content': ''}, 'finish_reason': None}]})}\n\n"
else:
for i in range(0, len(content_to_chunk), chunk_size):
yield f"data: {json.dumps({'id': resp_id, 'object': 'chat.completion.chunk', 'created': created_time, 'model': model_name, 'choices': [{'index': choice_idx, 'delta': {'content': content_to_chunk[i:i+chunk_size]}, 'finish_reason': None}]})}\n\n"
if len(content_to_chunk) > chunk_size: await asyncio.sleep(0.05)
yield f"data: {json.dumps({'id': resp_id, 'object': 'chat.completion.chunk', 'created': created_time, 'model': model_name, 'choices': [{'index': choice_idx, 'delta': {}, 'finish_reason': final_finish_reason}]})}\n\n"
yield "data: [DONE]\n\n"
async def gemini_fake_stream_generator(
gemini_client_instance: Any,
model_for_api_call: str,
prompt_for_api_call: List[types.Content],
gen_config_dict_for_api_call: Dict[str, Any],
request_obj: OpenAIRequest,
is_auto_attempt: bool
):
model_name_for_log = getattr(gemini_client_instance, 'model_name', 'unknown_gemini_model_object')
print(f"FAKE STREAMING (Gemini): Prep for '{request_obj.model}' (API model string: '{model_for_api_call}', client obj: '{model_name_for_log}')")
api_call_task = asyncio.create_task(
gemini_client_instance.aio.models.generate_content(
model=model_for_api_call,
contents=prompt_for_api_call,
config=gen_config_dict_for_api_call # Pass the dictionary directly
)
)
outer_keep_alive_interval = app_config.FAKE_STREAMING_INTERVAL_SECONDS
if outer_keep_alive_interval > 0:
while not api_call_task.done():
keep_alive_data = {"id": "chatcmpl-keepalive", "object": "chat.completion.chunk", "created": int(time.time()), "model": request_obj.model, "choices": [{"delta": {"content": ""}, "index": 0, "finish_reason": None}]}
yield f"data: {json.dumps(keep_alive_data)}\n\n"
await asyncio.sleep(outer_keep_alive_interval)
try:
raw_gemini_response = await api_call_task
openai_response_dict = convert_to_openai_format(raw_gemini_response, request_obj.model)
if hasattr(raw_gemini_response, 'prompt_feedback') and \
hasattr(raw_gemini_response.prompt_feedback, 'block_reason') and \
raw_gemini_response.prompt_feedback.block_reason:
block_message = f"Response blocked by Gemini safety filter: {raw_gemini_response.prompt_feedback.block_reason}"
if hasattr(raw_gemini_response.prompt_feedback, 'block_reason_message') and \
raw_gemini_response.prompt_feedback.block_reason_message:
block_message += f" (Message: {raw_gemini_response.prompt_feedback.block_reason_message})"
raise ValueError(block_message)
async for chunk_sse in _chunk_openai_response_dict_for_sse(
openai_response_dict=openai_response_dict
):
yield chunk_sse
except Exception as e_outer_gemini:
err_msg_detail = f"Error in gemini_fake_stream_generator (model: '{request_obj.model}'): {type(e_outer_gemini).__name__} - {str(e_outer_gemini)}"
print(f"ERROR: {err_msg_detail}")
sse_err_msg_display = str(e_outer_gemini)
if len(sse_err_msg_display) > 512: sse_err_msg_display = sse_err_msg_display[:512] + "..."
err_resp_sse = create_openai_error_response(500, sse_err_msg_display, "server_error")
json_payload_error = json.dumps(err_resp_sse)
if not is_auto_attempt:
yield f"data: {json_payload_error}\n\n"
yield "data: [DONE]\n\n"
if is_auto_attempt: raise
async def openai_fake_stream_generator(
openai_client: Union[AsyncOpenAI, Any],
openai_params: Dict[str, Any],
openai_extra_body: Dict[str, Any],
request_obj: OpenAIRequest,
is_auto_attempt: bool
):
api_model_name = openai_params.get("model", "unknown-openai-model")
print(f"FAKE STREAMING (OpenAI Direct): Prep for '{request_obj.model}' (API model: '{api_model_name}')")
response_id = f"chatcmpl-openaidirectfake-{int(time.time())}"
async def _openai_api_call_task():
params_for_call = openai_params.copy()
params_for_call['stream'] = False
return await openai_client.chat.completions.create(**params_for_call, extra_body=openai_extra_body)
api_call_task = asyncio.create_task(_openai_api_call_task())
outer_keep_alive_interval = app_config.FAKE_STREAMING_INTERVAL_SECONDS
if outer_keep_alive_interval > 0:
while not api_call_task.done():
keep_alive_data = {"id": "chatcmpl-keepalive", "object": "chat.completion.chunk", "created": int(time.time()), "model": request_obj.model, "choices": [{"delta": {"content": ""}, "index": 0, "finish_reason": None}]}
yield f"data: {json.dumps(keep_alive_data)}\n\n"
await asyncio.sleep(outer_keep_alive_interval)
try:
raw_response_obj = await api_call_task
openai_response_dict = raw_response_obj.model_dump(exclude_unset=True, exclude_none=True)
if app_config.SAFETY_SCORE and hasattr(raw_response_obj, "choices") and raw_response_obj.choices:
for i, choice_obj in enumerate(raw_response_obj.choices):
if hasattr(choice_obj, "safety_ratings") and choice_obj.safety_ratings:
safety_html = _create_safety_ratings_html(choice_obj.safety_ratings)
if i < len(openai_response_dict.get("choices", [])):
choice_dict = openai_response_dict["choices"][i]
message_dict = choice_dict.get("message")
if message_dict:
current_content = message_dict.get("content") or ""
message_dict["content"] = current_content + safety_html
if openai_response_dict.get("choices") and \
isinstance(openai_response_dict["choices"], list) and \
len(openai_response_dict["choices"]) > 0:
first_choice_dict_item = openai_response_dict["choices"]
if first_choice_dict_item and isinstance(first_choice_dict_item, dict) :
choice_message_ref = first_choice_dict_item.get("message", {})
original_content = choice_message_ref.get("content")
if isinstance(original_content, str):
reasoning_text, actual_content = extract_reasoning_by_tags(original_content, VERTEX_REASONING_TAG)
choice_message_ref["content"] = actual_content
if reasoning_text:
choice_message_ref["reasoning_content"] = reasoning_text
async for chunk_sse in _chunk_openai_response_dict_for_sse(
openai_response_dict=openai_response_dict,
response_id_override=response_id,
model_name_override=request_obj.model
):
yield chunk_sse
except Exception as e_outer:
err_msg_detail = f"Error in openai_fake_stream_generator (model: '{request_obj.model}'): {type(e_outer).__name__} - {str(e_outer)}"
print(f"ERROR: {err_msg_detail}")
sse_err_msg_display = str(e_outer)
if len(sse_err_msg_display) > 512: sse_err_msg_display = sse_err_msg_display[:512] + "..."
err_resp_sse = create_openai_error_response(500, sse_err_msg_display, "server_error")
json_payload_error = json.dumps(err_resp_sse)
if not is_auto_attempt:
yield f"data: {json_payload_error}\n\n"
yield "data: [DONE]\n\n"
if is_auto_attempt: raise
async def execute_gemini_call(
current_client: Any,
model_to_call: str,
prompt_func: Callable[[List[OpenAIMessage]], List[types.Content]],
gen_config_dict: Dict[str, Any],
request_obj: OpenAIRequest,
is_auto_attempt: bool = False
):
actual_prompt_for_call = prompt_func(request_obj.messages)
client_model_name_for_log = getattr(current_client, 'model_name', 'unknown_direct_client_object')
print(f"INFO: execute_gemini_call for requested API model '{model_to_call}', using client object with internal name '{client_model_name_for_log}'. Original request model: '{request_obj.model}'")
if request_obj.stream:
if app_config.FAKE_STREAMING_ENABLED:
return StreamingResponse(
gemini_fake_stream_generator(
current_client, model_to_call, actual_prompt_for_call,
gen_config_dict,
request_obj, is_auto_attempt
), media_type="text/event-stream"
)
else: # True Streaming
response_id_for_stream = f"chatcmpl-realstream-{int(time.time())}"
async def _gemini_real_stream_generator_inner():
try:
stream_gen_obj = await current_client.aio.models.generate_content_stream(
model=model_to_call,
contents=actual_prompt_for_call,
config=gen_config_dict # Pass the dictionary directly
)
async for chunk_item_call in stream_gen_obj:
yield convert_chunk_to_openai(chunk_item_call, request_obj.model, response_id_for_stream, 0)
yield "data: [DONE]\n\n"
except Exception as e_stream_call:
err_msg_detail_stream = f"Streaming Error (Gemini API, model string: '{model_to_call}'): {type(e_stream_call).__name__} - {str(e_stream_call)}"
print(f"ERROR: {err_msg_detail_stream}")
s_err = str(e_stream_call); s_err = s_err[:1024]+"..." if len(s_err)>1024 else s_err
err_resp = create_openai_error_response(500,s_err,"server_error")
j_err = json.dumps(err_resp)
if not is_auto_attempt:
yield f"data: {j_err}\n\n"
yield "data: [DONE]\n\n"
raise e_stream_call
return StreamingResponse(_gemini_real_stream_generator_inner(), media_type="text/event-stream")
else: # Non-streaming
response_obj_call = await current_client.aio.models.generate_content(
model=model_to_call,
contents=actual_prompt_for_call,
config=gen_config_dict # Pass the dictionary directly
)
if hasattr(response_obj_call, 'prompt_feedback') and \
hasattr(response_obj_call.prompt_feedback, 'block_reason') and \
response_obj_call.prompt_feedback.block_reason:
block_msg = f"Blocked (Gemini): {response_obj_call.prompt_feedback.block_reason}"
if hasattr(response_obj_call.prompt_feedback,'block_reason_message') and \
response_obj_call.prompt_feedback.block_reason_message:
block_msg+=f" ({response_obj_call.prompt_feedback.block_reason_message})"
raise ValueError(block_msg)
if not is_gemini_response_valid(response_obj_call):
error_details = f"Invalid non-streaming Gemini response for model string '{model_to_call}'. "
if hasattr(response_obj_call, 'candidates'):
error_details += f"Candidates: {len(response_obj_call.candidates) if response_obj_call.candidates else 0}. "
if response_obj_call.candidates and len(response_obj_call.candidates) > 0:
candidate = response_obj_call.candidates if isinstance(response_obj_call.candidates, list) else response_obj_call.candidates
if hasattr(candidate, 'content'):
error_details += "Has content. "
if hasattr(candidate.content, 'parts'):
error_details += f"Parts: {len(candidate.content.parts) if candidate.content.parts else 0}. "
if candidate.content.parts and len(candidate.content.parts) > 0:
part = candidate.content.parts if isinstance(candidate.content.parts, list) else candidate.content.parts
if hasattr(part, 'text'):
text_preview = str(getattr(part, 'text', ''))[:100]
error_details += f"First part text: '{text_preview}'"
elif hasattr(part, 'function_call'):
error_details += f"First part is function_call: {part.function_call.name}"
else:
error_details += f"Response type: {type(response_obj_call).__name__}"
raise ValueError(error_details)
openai_response_content = convert_to_openai_format(response_obj_call, request_obj.model)
return JSONResponse(content=openai_response_content) |