File size: 26,401 Bytes
4118a69
 
 
 
bee94f0
4118a69
bee94f0
4118a69
bee94f0
a562ac5
afcace3
4118a69
bee94f0
 
c863762
a562ac5
afcace3
 
bee94f0
 
00f6edb
 
 
 
 
 
 
 
 
 
8563208
 
00f6edb
a34ce63
 
 
00f6edb
 
 
 
 
 
 
a34ce63
 
 
 
 
 
 
8563208
 
a34ce63
 
 
 
00f6edb
 
 
 
 
a562ac5
00f6edb
 
a34ce63
 
 
 
 
 
 
8563208
a34ce63
8563208
 
a34ce63
 
 
 
 
 
00f6edb
 
a34ce63
 
8563208
 
00f6edb
 
 
26f31fb
 
8563208
a34ce63
 
 
 
8563208
a34ce63
8563208
 
26f31fb
8563208
26f31fb
00f6edb
4118a69
8563208
4118a69
 
a562ac5
4118a69
 
 
 
 
 
 
8563208
afcace3
4118a69
afcace3
 
 
 
a6fc424
 
 
 
 
 
4118a69
5b1cb99
8563208
4d7462c
 
8563208
4d7462c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8563208
4d7462c
 
 
 
 
 
 
8563208
4d7462c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a562ac5
4118a69
 
a562ac5
bee94f0
 
8563208
4118a69
8563208
 
 
 
 
 
4118a69
 
8563208
 
 
 
bee94f0
8563208
 
 
4762ab6
8563208
a562ac5
8563208
 
 
 
a562ac5
8563208
 
 
 
 
 
 
 
a562ac5
8563208
 
 
 
 
 
a562ac5
8563208
 
 
 
a562ac5
8563208
 
 
 
 
4762ab6
a562ac5
8563208
a562ac5
8563208
 
 
 
 
 
 
 
 
a562ac5
8563208
 
 
 
 
4762ab6
8563208
 
 
bee94f0
 
8563208
3c02b3d
 
a562ac5
 
bee94f0
4762ab6
bee94f0
4762ab6
8563208
 
a5586dc
 
 
 
a562ac5
086a5ef
bee94f0
 
a5586dc
 
 
8563208
a5586dc
 
 
 
8563208
 
 
 
 
 
 
 
 
 
 
 
 
a562ac5
a5586dc
8563208
a5586dc
 
 
 
 
 
 
 
 
 
 
8563208
a5586dc
 
8563208
a562ac5
4762ab6
bee94f0
 
a562ac5
bee94f0
4762ab6
8563208
 
bee94f0
8563208
 
a562ac5
8563208
 
 
d8fffd2
 
8563208
4762ab6
d8fffd2
 
bee94f0
 
8563208
 
 
afcace3
 
 
 
 
 
 
 
 
 
 
8563208
a562ac5
 
8563208
afcace3
 
 
a562ac5
 
 
 
afcace3
a562ac5
 
8563208
 
a562ac5
 
bee94f0
8563208
4118a69
4762ab6
8563208
bee94f0
 
 
 
 
 
 
4118a69
8563208
 
4118a69
 
3c02b3d
 
8563208
a562ac5
4762ab6
b7ec9d2
4118a69
 
086a5ef
4762ab6
8563208
4118a69
 
086a5ef
8563208
 
a562ac5
8563208
 
086a5ef
8563208
 
 
 
 
a562ac5
 
 
8563208
 
 
086a5ef
8563208
 
 
 
 
 
a562ac5
8563208
 
 
 
 
086a5ef
a562ac5
 
 
086a5ef
8563208
 
 
bee94f0
8563208
 
086a5ef
bee94f0
086a5ef
1c1a410
 
 
 
 
a562ac5
1c1a410
 
 
 
 
a562ac5
1c1a410
 
 
8563208
 
1c1a410
 
 
a562ac5
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
import json
import time
import math
import asyncio
from typing import List, Dict, Any, Callable, Union, Optional

from fastapi.responses import JSONResponse, StreamingResponse
from google.auth.transport.requests import Request as AuthRequest
from google.genai import types
from openai import AsyncOpenAI 


from models import OpenAIRequest, OpenAIMessage
from message_processing import (
    convert_to_openai_format,
    convert_chunk_to_openai,
    extract_reasoning_by_tags,
    _create_safety_ratings_html
)
import config as app_config
from config import VERTEX_REASONING_TAG

class StreamingReasoningProcessor:
    def __init__(self, tag_name: str = VERTEX_REASONING_TAG):
        self.tag_name = tag_name
        self.open_tag = f"<{tag_name}>"
        self.close_tag = f"</{tag_name}>"
        self.tag_buffer = ""
        self.inside_tag = False
        self.reasoning_buffer = ""
        self.partial_tag_buffer = "" 

    def process_chunk(self, content: str) -> tuple[str, str]:
        if self.partial_tag_buffer:
            content = self.partial_tag_buffer + content
            self.partial_tag_buffer = ""
        self.tag_buffer += content
        processed_content = ""
        current_reasoning = ""
        while self.tag_buffer:
            if not self.inside_tag:
                open_pos = self.tag_buffer.find(self.open_tag)
                if open_pos == -1:
                    partial_match = False
                    for i in range(1, min(len(self.open_tag), len(self.tag_buffer) + 1)):
                        if self.tag_buffer[-i:] == self.open_tag[:i]:
                            partial_match = True
                            if len(self.tag_buffer) > i:
                                processed_content += self.tag_buffer[:-i]
                                self.partial_tag_buffer = self.tag_buffer[-i:]
                            else: self.partial_tag_buffer = self.tag_buffer
                            self.tag_buffer = ""
                            break
                    if not partial_match:
                        processed_content += self.tag_buffer
                        self.tag_buffer = ""
                    break
                else:
                    processed_content += self.tag_buffer[:open_pos]
                    self.tag_buffer = self.tag_buffer[open_pos + len(self.open_tag):]
                    self.inside_tag = True
            else: 
                close_pos = self.tag_buffer.find(self.close_tag)
                if close_pos == -1:
                    partial_match = False
                    for i in range(1, min(len(self.close_tag), len(self.tag_buffer) + 1)):
                        if self.tag_buffer[-i:] == self.close_tag[:i]:
                            partial_match = True
                            if len(self.tag_buffer) > i:
                                new_reasoning = self.tag_buffer[:-i]
                                self.reasoning_buffer += new_reasoning
                                if new_reasoning: current_reasoning = new_reasoning
                                self.partial_tag_buffer = self.tag_buffer[-i:]
                            else: self.partial_tag_buffer = self.tag_buffer
                            self.tag_buffer = ""
                            break
                    if not partial_match:
                        if self.tag_buffer:
                            self.reasoning_buffer += self.tag_buffer
                            current_reasoning = self.tag_buffer
                            self.tag_buffer = ""
                    break
                else:
                    final_reasoning_chunk = self.tag_buffer[:close_pos]
                    self.reasoning_buffer += final_reasoning_chunk
                    if final_reasoning_chunk: current_reasoning = final_reasoning_chunk
                    self.reasoning_buffer = "" 
                    self.tag_buffer = self.tag_buffer[close_pos + len(self.close_tag):]
                    self.inside_tag = False
        return processed_content, current_reasoning
    
    def flush_remaining(self) -> tuple[str, str]:
        remaining_content, remaining_reasoning = "", ""
        if self.partial_tag_buffer:
            remaining_content += self.partial_tag_buffer
            self.partial_tag_buffer = ""
        if not self.inside_tag:
            if self.tag_buffer: remaining_content += self.tag_buffer
        else:
            if self.reasoning_buffer: remaining_reasoning = self.reasoning_buffer
            if self.tag_buffer: remaining_content += self.tag_buffer
            self.inside_tag = False
        self.tag_buffer, self.reasoning_buffer = "", ""
        return remaining_content, remaining_reasoning

def create_openai_error_response(status_code: int, message: str, error_type: str) -> Dict[str, Any]:
    return {"error": {"message": message, "type": error_type, "code": status_code, "param": None}}

def create_generation_config(request: OpenAIRequest) -> Dict[str, Any]:
    config: Dict[str, Any] = {} 
    if request.temperature is not None: config["temperature"] = request.temperature
    if request.max_tokens is not None: config["max_output_tokens"] = request.max_tokens
    if request.top_p is not None: config["top_p"] = request.top_p
    if request.top_k is not None: config["top_k"] = request.top_k
    if request.stop is not None: config["stop_sequences"] = request.stop
    if request.seed is not None: config["seed"] = request.seed
    if request.n is not None: config["candidate_count"] = request.n
    
    safety_threshold = "BLOCK_NONE" if app_config.SAFETY_SCORE else "BLOCK_ONLY_HIGH"
    config["safety_settings"] = [
            types.SafetySetting(category="HARM_CATEGORY_HATE_SPEECH", threshold=safety_threshold),
            types.SafetySetting(category="HARM_CATEGORY_DANGEROUS_CONTENT", threshold=safety_threshold),
            types.SafetySetting(category="HARM_CATEGORY_SEXUALLY_EXPLICIT", threshold=safety_threshold),
            types.SafetySetting(category="HARM_CATEGORY_HARASSMENT", threshold=safety_threshold),
            types.SafetySetting(category="HARM_CATEGORY_CIVIC_INTEGRITY", threshold=safety_threshold),
            types.SafetySetting(category="HARM_CATEGORY_UNSPECIFIED", threshold=safety_threshold),
            types.SafetySetting(category="HARM_CATEGORY_IMAGE_HATE", threshold=safety_threshold),
            types.SafetySetting(category="HARM_CATEGORY_IMAGE_DANGEROUS_CONTENT", threshold=safety_threshold),
            types.SafetySetting(category="HARM_CATEGORY_IMAGE_HARASSMENT", threshold=safety_threshold),
            types.SafetySetting(category="HARM_CATEGORY_IMAGE_SEXUALLY_EXPLICIT", threshold=safety_threshold),
    ]
    # config["thinking_config"] = {"include_thoughts": True}

    # 1. Add tools (function declarations)
    function_declarations = []
    if request.tools:
        for tool in request.tools:
            if tool.get("type") == "function":
                # func_def = tool.get("function")
                func_def = tool
                if func_def:
                    # Extract only the fields accepted by the Gemini API
                    declaration = {
                        "name": func_def.get("name"),
                        "description": func_def.get("description"),
                    }
                    # Get parameters and remove the $schema field if it exists
                    parameters = func_def.get("parameters")
                    if isinstance(parameters, dict) and "$schema" in parameters:
                        parameters = parameters.copy()
                        del parameters["$schema"]
                    if parameters is not None:
                        declaration["parameters"] = parameters

                    # Remove keys with None values to keep the payload clean
                    declaration = {k: v for k, v in declaration.items() if v is not None}
                    if declaration.get("name"):  # Ensure name exists
                        function_declarations.append(declaration)

    if function_declarations:
        config["tools"] = [{"function_declarations": function_declarations}]

    # 2. Add tool_config (based on tool_choice)
    tool_config = None
    if request.tool_choice:
        choice = request.tool_choice
        mode = None
        allowed_functions = None
        if isinstance(choice, str):
            if choice == "none":
                mode = "NONE"
            elif choice == "auto":
                mode = "AUTO"
        elif isinstance(choice, dict) and choice.get("type") == "function":
            func_name = choice.get("function", {}).get("name")
            if func_name:
                mode = "ANY"  # 'ANY' mode is used to force a specific function call
                allowed_functions = [func_name]
        
        # If a valid mode was parsed, build the tool_config
        if mode:
            config_dict = {"mode": mode}
            if allowed_functions:
                config_dict["allowed_function_names"] = allowed_functions
            tool_config = {"function_calling_config": config_dict}
    
    if tool_config:
        config["tool_config"] = tool_config
        
    return config


def is_gemini_response_valid(response: Any) -> bool:
    if response is None: return False
    if hasattr(response, 'text') and isinstance(response.text, str) and response.text.strip(): return True
    if hasattr(response, 'candidates') and response.candidates:
        for cand in response.candidates:
            if hasattr(cand, 'text') and isinstance(cand.text, str) and cand.text.strip(): return True
            if hasattr(cand, 'content') and hasattr(cand.content, 'parts') and cand.content.parts:
                for part in cand.content.parts:
                    if hasattr(part, 'function_call'): return True 
                    if hasattr(part, 'text') and isinstance(getattr(part, 'text', None), str) and getattr(part, 'text', '').strip(): return True
    return False

async def _chunk_openai_response_dict_for_sse(
    openai_response_dict: Dict[str, Any],
    response_id_override: Optional[str] = None, 
    model_name_override: Optional[str] = None
):
    resp_id = response_id_override or openai_response_dict.get("id", f"chatcmpl-fakestream-{int(time.time())}")
    model_name = model_name_override or openai_response_dict.get("model", "unknown")
    created_time = openai_response_dict.get("created", int(time.time()))
    
    choices = openai_response_dict.get("choices", [])
    if not choices: 
        yield f"data: {json.dumps({'id': resp_id, 'object': 'chat.completion.chunk', 'created': created_time, 'model': model_name, 'choices': [{'index': 0, 'delta': {}, 'finish_reason': 'error'}]})}\n\n"
        yield "data: [DONE]\n\n"
        return

    for choice_idx, choice in enumerate(choices): 
        message = choice.get("message", {})
        final_finish_reason = choice.get("finish_reason", "stop")

        if message.get("tool_calls"):
            tool_calls_list = message.get("tool_calls", [])
            for tc_item_idx, tool_call_item in enumerate(tool_calls_list):
                delta_tc_start = {
                    "tool_calls": [{
                        "index": tc_item_idx, 
                        "id": tool_call_item["id"],
                        "type": "function",
                        "function": {"name": tool_call_item["function"]["name"], "arguments": ""}
                    }]
                }
                yield f"data: {json.dumps({'id': resp_id, 'object': 'chat.completion.chunk', 'created': created_time, 'model': model_name, 'choices': [{'index': choice_idx, 'delta': delta_tc_start, 'finish_reason': None}]})}\n\n"
                await asyncio.sleep(0.01) 

                delta_tc_args = {
                    "tool_calls": [{
                        "index": tc_item_idx,
                        "id": tool_call_item["id"], 
                        "function": {"arguments": tool_call_item["function"]["arguments"]}
                    }]
                }
                yield f"data: {json.dumps({'id': resp_id, 'object': 'chat.completion.chunk', 'created': created_time, 'model': model_name, 'choices': [{'index': choice_idx, 'delta': delta_tc_args, 'finish_reason': None}]})}\n\n"
                await asyncio.sleep(0.01)
        
        elif message.get("content") is not None or message.get("reasoning_content") is not None : 
            reasoning_content = message.get("reasoning_content", "")
            actual_content = message.get("content") 

            if reasoning_content:
                delta_reasoning = {"reasoning_content": reasoning_content}
                yield f"data: {json.dumps({'id': resp_id, 'object': 'chat.completion.chunk', 'created': created_time, 'model': model_name, 'choices': [{'index': choice_idx, 'delta': delta_reasoning, 'finish_reason': None}]})}\n\n"
                if actual_content is not None: await asyncio.sleep(0.05)

            content_to_chunk = actual_content if actual_content is not None else ""
            if actual_content is not None:
                chunk_size = max(1, math.ceil(len(content_to_chunk) / 10)) if content_to_chunk else 1
                if not content_to_chunk and not reasoning_content : 
                    yield f"data: {json.dumps({'id': resp_id, 'object': 'chat.completion.chunk', 'created': created_time, 'model': model_name, 'choices': [{'index': choice_idx, 'delta': {'content': ''}, 'finish_reason': None}]})}\n\n"
                else:
                    for i in range(0, len(content_to_chunk), chunk_size):
                        yield f"data: {json.dumps({'id': resp_id, 'object': 'chat.completion.chunk', 'created': created_time, 'model': model_name, 'choices': [{'index': choice_idx, 'delta': {'content': content_to_chunk[i:i+chunk_size]}, 'finish_reason': None}]})}\n\n"
                        if len(content_to_chunk) > chunk_size: await asyncio.sleep(0.05)
        
        yield f"data: {json.dumps({'id': resp_id, 'object': 'chat.completion.chunk', 'created': created_time, 'model': model_name, 'choices': [{'index': choice_idx, 'delta': {}, 'finish_reason': final_finish_reason}]})}\n\n"

    yield "data: [DONE]\n\n"


async def gemini_fake_stream_generator( 
    gemini_client_instance: Any, 
    model_for_api_call: str, 
    prompt_for_api_call: List[types.Content],
    gen_config_dict_for_api_call: Dict[str, Any], 
    request_obj: OpenAIRequest,
    is_auto_attempt: bool
):
    model_name_for_log = getattr(gemini_client_instance, 'model_name', 'unknown_gemini_model_object')
    print(f"FAKE STREAMING (Gemini): Prep for '{request_obj.model}' (API model string: '{model_for_api_call}', client obj: '{model_name_for_log}')")
    
    api_call_task = asyncio.create_task(
        gemini_client_instance.aio.models.generate_content(
            model=model_for_api_call, 
            contents=prompt_for_api_call, 
            config=gen_config_dict_for_api_call # Pass the dictionary directly
        )
    )

    outer_keep_alive_interval = app_config.FAKE_STREAMING_INTERVAL_SECONDS
    if outer_keep_alive_interval > 0:
        while not api_call_task.done():
            keep_alive_data = {"id": "chatcmpl-keepalive", "object": "chat.completion.chunk", "created": int(time.time()), "model": request_obj.model, "choices": [{"delta": {"content": ""}, "index": 0, "finish_reason": None}]}
            yield f"data: {json.dumps(keep_alive_data)}\n\n"
            await asyncio.sleep(outer_keep_alive_interval)
    
    try:
        raw_gemini_response = await api_call_task 
        openai_response_dict = convert_to_openai_format(raw_gemini_response, request_obj.model)
        
        if hasattr(raw_gemini_response, 'prompt_feedback') and \
           hasattr(raw_gemini_response.prompt_feedback, 'block_reason') and \
           raw_gemini_response.prompt_feedback.block_reason:
            block_message = f"Response blocked by Gemini safety filter: {raw_gemini_response.prompt_feedback.block_reason}"
            if hasattr(raw_gemini_response.prompt_feedback, 'block_reason_message') and \
               raw_gemini_response.prompt_feedback.block_reason_message:
                block_message += f" (Message: {raw_gemini_response.prompt_feedback.block_reason_message})"
            raise ValueError(block_message)

        async for chunk_sse in _chunk_openai_response_dict_for_sse(
            openai_response_dict=openai_response_dict
        ):
            yield chunk_sse

    except Exception as e_outer_gemini:
        err_msg_detail = f"Error in gemini_fake_stream_generator (model: '{request_obj.model}'): {type(e_outer_gemini).__name__} - {str(e_outer_gemini)}"
        print(f"ERROR: {err_msg_detail}")
        sse_err_msg_display = str(e_outer_gemini)
        if len(sse_err_msg_display) > 512: sse_err_msg_display = sse_err_msg_display[:512] + "..."
        err_resp_sse = create_openai_error_response(500, sse_err_msg_display, "server_error")
        json_payload_error = json.dumps(err_resp_sse)
        if not is_auto_attempt:
            yield f"data: {json_payload_error}\n\n"
            yield "data: [DONE]\n\n"
        if is_auto_attempt: raise


async def openai_fake_stream_generator( 
    openai_client: Union[AsyncOpenAI, Any], 
    openai_params: Dict[str, Any],
    openai_extra_body: Dict[str, Any],
    request_obj: OpenAIRequest,
    is_auto_attempt: bool
):
    api_model_name = openai_params.get("model", "unknown-openai-model")
    print(f"FAKE STREAMING (OpenAI Direct): Prep for '{request_obj.model}' (API model: '{api_model_name}')")
    response_id = f"chatcmpl-openaidirectfake-{int(time.time())}"
    
    async def _openai_api_call_task():
        params_for_call = openai_params.copy()
        params_for_call['stream'] = False 
        return await openai_client.chat.completions.create(**params_for_call, extra_body=openai_extra_body)

    api_call_task = asyncio.create_task(_openai_api_call_task())
    outer_keep_alive_interval = app_config.FAKE_STREAMING_INTERVAL_SECONDS
    if outer_keep_alive_interval > 0:
        while not api_call_task.done():
            keep_alive_data = {"id": "chatcmpl-keepalive", "object": "chat.completion.chunk", "created": int(time.time()), "model": request_obj.model, "choices": [{"delta": {"content": ""}, "index": 0, "finish_reason": None}]}
            yield f"data: {json.dumps(keep_alive_data)}\n\n"
            await asyncio.sleep(outer_keep_alive_interval)

    try:
        raw_response_obj = await api_call_task 
        openai_response_dict = raw_response_obj.model_dump(exclude_unset=True, exclude_none=True)

        if app_config.SAFETY_SCORE and hasattr(raw_response_obj, "choices") and raw_response_obj.choices:
            for i, choice_obj in enumerate(raw_response_obj.choices):
                if hasattr(choice_obj, "safety_ratings") and choice_obj.safety_ratings:
                    safety_html = _create_safety_ratings_html(choice_obj.safety_ratings)
                    if i < len(openai_response_dict.get("choices", [])):
                        choice_dict = openai_response_dict["choices"][i]
                        message_dict = choice_dict.get("message")
                        if message_dict:
                            current_content = message_dict.get("content") or ""
                            message_dict["content"] = current_content + safety_html

        if openai_response_dict.get("choices") and \
           isinstance(openai_response_dict["choices"], list) and \
           len(openai_response_dict["choices"]) > 0:
            
            first_choice_dict_item = openai_response_dict["choices"]
            if first_choice_dict_item and isinstance(first_choice_dict_item, dict) :
                choice_message_ref = first_choice_dict_item.get("message", {})
                original_content = choice_message_ref.get("content")
                if isinstance(original_content, str):
                    reasoning_text, actual_content = extract_reasoning_by_tags(original_content, VERTEX_REASONING_TAG)
                    choice_message_ref["content"] = actual_content
                    if reasoning_text:
                        choice_message_ref["reasoning_content"] = reasoning_text
        
        async for chunk_sse in _chunk_openai_response_dict_for_sse(
            openai_response_dict=openai_response_dict,
            response_id_override=response_id, 
            model_name_override=request_obj.model
        ):
            yield chunk_sse
            
    except Exception as e_outer: 
        err_msg_detail = f"Error in openai_fake_stream_generator (model: '{request_obj.model}'): {type(e_outer).__name__} - {str(e_outer)}"
        print(f"ERROR: {err_msg_detail}")
        sse_err_msg_display = str(e_outer)
        if len(sse_err_msg_display) > 512: sse_err_msg_display = sse_err_msg_display[:512] + "..."
        err_resp_sse = create_openai_error_response(500, sse_err_msg_display, "server_error")
        json_payload_error = json.dumps(err_resp_sse)
        if not is_auto_attempt:
            yield f"data: {json_payload_error}\n\n"
            yield "data: [DONE]\n\n"
        if is_auto_attempt: raise


async def execute_gemini_call(
    current_client: Any, 
    model_to_call: str,  
    prompt_func: Callable[[List[OpenAIMessage]], List[types.Content]], 
    gen_config_dict: Dict[str, Any], 
    request_obj: OpenAIRequest, 
    is_auto_attempt: bool = False
):
    actual_prompt_for_call = prompt_func(request_obj.messages)
    client_model_name_for_log = getattr(current_client, 'model_name', 'unknown_direct_client_object')
    print(f"INFO: execute_gemini_call for requested API model '{model_to_call}', using client object with internal name '{client_model_name_for_log}'. Original request model: '{request_obj.model}'")
    
    if request_obj.stream:
        if app_config.FAKE_STREAMING_ENABLED:
            return StreamingResponse(
                gemini_fake_stream_generator(
                    current_client, model_to_call, actual_prompt_for_call,
                    gen_config_dict, 
                    request_obj, is_auto_attempt
                ), media_type="text/event-stream"
            )
        else: # True Streaming
            response_id_for_stream = f"chatcmpl-realstream-{int(time.time())}"
            async def _gemini_real_stream_generator_inner():
                try:
                    stream_gen_obj = await current_client.aio.models.generate_content_stream(
                        model=model_to_call, 
                        contents=actual_prompt_for_call,
                        config=gen_config_dict # Pass the dictionary directly
                    )
                    async for chunk_item_call in stream_gen_obj:
                        yield convert_chunk_to_openai(chunk_item_call, request_obj.model, response_id_for_stream, 0)
                    yield "data: [DONE]\n\n"
                except Exception as e_stream_call:
                    err_msg_detail_stream = f"Streaming Error (Gemini API, model string: '{model_to_call}'): {type(e_stream_call).__name__} - {str(e_stream_call)}"
                    print(f"ERROR: {err_msg_detail_stream}")
                    s_err = str(e_stream_call); s_err = s_err[:1024]+"..." if len(s_err)>1024 else s_err
                    err_resp = create_openai_error_response(500,s_err,"server_error")
                    j_err = json.dumps(err_resp)
                    if not is_auto_attempt: 
                        yield f"data: {j_err}\n\n"
                        yield "data: [DONE]\n\n"
                    raise e_stream_call
            return StreamingResponse(_gemini_real_stream_generator_inner(), media_type="text/event-stream")
    else: # Non-streaming
        response_obj_call = await current_client.aio.models.generate_content(
            model=model_to_call, 
            contents=actual_prompt_for_call,
            config=gen_config_dict # Pass the dictionary directly
        )
        if hasattr(response_obj_call, 'prompt_feedback') and \
           hasattr(response_obj_call.prompt_feedback, 'block_reason') and \
           response_obj_call.prompt_feedback.block_reason:
            block_msg = f"Blocked (Gemini): {response_obj_call.prompt_feedback.block_reason}"
            if hasattr(response_obj_call.prompt_feedback,'block_reason_message') and \
               response_obj_call.prompt_feedback.block_reason_message: 
                block_msg+=f" ({response_obj_call.prompt_feedback.block_reason_message})"
            raise ValueError(block_msg)
        
        if not is_gemini_response_valid(response_obj_call):
            error_details = f"Invalid non-streaming Gemini response for model string '{model_to_call}'. "
            if hasattr(response_obj_call, 'candidates'):
                error_details += f"Candidates: {len(response_obj_call.candidates) if response_obj_call.candidates else 0}. "
                if response_obj_call.candidates and len(response_obj_call.candidates) > 0:
                    candidate = response_obj_call.candidates if isinstance(response_obj_call.candidates, list) else response_obj_call.candidates
                    if hasattr(candidate, 'content'):
                        error_details += "Has content. "
                        if hasattr(candidate.content, 'parts'):
                            error_details += f"Parts: {len(candidate.content.parts) if candidate.content.parts else 0}. "
                            if candidate.content.parts and len(candidate.content.parts) > 0:
                                part = candidate.content.parts if isinstance(candidate.content.parts, list) else candidate.content.parts
                                if hasattr(part, 'text'):
                                    text_preview = str(getattr(part, 'text', ''))[:100]
                                    error_details += f"First part text: '{text_preview}'"
                                elif hasattr(part, 'function_call'):
                                    error_details += f"First part is function_call: {part.function_call.name}"
            else:
                error_details += f"Response type: {type(response_obj_call).__name__}"
            raise ValueError(error_details)
        
        openai_response_content = convert_to_openai_format(response_obj_call, request_obj.model)
        return JSONResponse(content=openai_response_content)