Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Liu Yue) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import threading | |
import torch | |
os.system('nvidia-smi') | |
# os.system('apt update -y && apt-get install -y apt-utils && apt install -y unzip') | |
print(torch.backends.cudnn.version()) | |
import importlib | |
import sys | |
dynamic_modules_file1 = '/home/user/.pyenv/versions/3.10.16/lib/python3.10/site-packages/diffusers/utils/dynamic_modules_utils.py' | |
dynamic_modules_file2 = '/usr/local/lib/python3.10/site-packages/diffusers/utils/dynamic_modules_utils.py' | |
def modify_dynamic_modules_file(dynamic_modules_file): | |
if os.path.exists(dynamic_modules_file): | |
with open(dynamic_modules_file, 'r') as file: | |
lines = file.readlines() | |
with open(dynamic_modules_file, 'w') as file: | |
for line in lines: | |
if "from huggingface_hub import cached_download" in line: | |
file.write("from huggingface_hub import hf_hub_download, model_info\n") | |
else: | |
file.write(line) | |
modify_dynamic_modules_file(dynamic_modules_file1) | |
modify_dynamic_modules_file(dynamic_modules_file2) | |
import sys | |
import argparse | |
import gradio as gr | |
import numpy as np | |
import torchaudio | |
import random | |
import librosa | |
import spaces | |
from funasr import AutoModel | |
from funasr.utils.postprocess_utils import rich_transcription_postprocess | |
ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) | |
sys.path.append('{}/third_party/Matcha-TTS'.format(ROOT_DIR)) | |
from huggingface_hub import snapshot_download | |
snapshot_download('FunAudioLLM/CosyVoice2-0.5B', local_dir='pretrained_models/CosyVoice2-0.5B') | |
snapshot_download('kemuriririn/CosyVoice-ttsfrd', local_dir='pretrained_models/CosyVoice-ttsfrd') | |
snapshot_download('FunAudioLLM/SenseVoiceSmall', local_dir='pretrained_models/SenseVoiceSmall') | |
os.system('cd pretrained_models/CosyVoice-ttsfrd/ && pip install ttsfrd_dependency-0.1-py3-none-any.whl && pip install ttsfrd-0.4.2-cp310-cp310-linux_x86_64.whl && unzip resource.zip -d .') | |
from cosyvoice.cli.cosyvoice import CosyVoice2 | |
from cosyvoice.utils.file_utils import load_wav, logging | |
from cosyvoice.utils.common import set_all_random_seed | |
inference_mode_list = ['3s Voice Clone'] | |
instruct_dict = {'3s Voice Clone': '1. Upload prompt wav file (or record from mic), no longer than 30s, wav file will be used if provided at the same time\n2. Input prompt transcription\n3. click \'Speech Synthesis\' button'} | |
stream_mode_list = [('No', False), ('Yes', True)] | |
max_val = 0.8 | |
cosyvoice_instance = None | |
asr_model = None | |
cosyvoice_lock = threading.Lock() | |
def get_cosyvoice(): | |
global cosyvoice_instance, model_dir | |
load_jit = True if os.environ.get('jit') == '1' else False | |
load_onnx = True if os.environ.get('onnx') == '1' else False | |
load_trt = True if os.environ.get('trt') == '1' else False | |
with cosyvoice_lock: | |
if cosyvoice_instance is not None: | |
return cosyvoice_instance | |
else: | |
logging.info('cosyvoice args load_jit {} load_onnx {} load_trt {}'.format(load_jit, load_onnx, load_trt)) | |
cosyvoice_instance= CosyVoice2('pretrained_models/CosyVoice2-0.5B', load_jit=load_jit, load_onnx=load_onnx, | |
load_trt=load_trt) | |
return cosyvoice_instance | |
def infer_zeroshot(tts_text, prompt_text, prompt_speech_16k, stream, speed): | |
cosyvoice = get_cosyvoice() | |
if cosyvoice.frontend.instruct is True: | |
logging.warning('CosyVoice2-0.5B does not support zero-shot inference, please use CosyVoice-300M or CosyVoice-300M-Instruct.') | |
return | |
for i in cosyvoice.inference_zero_shot(tts_text, prompt_text, prompt_speech_16k, stream=stream, speed=speed): | |
yield i | |
def get_asr(): | |
global asr_model | |
if asr_model is not None: | |
return asr_model | |
else: | |
logging.info('asr model load') | |
model_dir = "pretrained_models/SenseVoiceSmall" | |
asr_model = AutoModel( | |
model=model_dir, | |
disable_update=True, | |
log_level='DEBUG', | |
device="cuda:0") | |
return asr_model | |
def generate_seed(): | |
seed = random.randint(1, 100000000) | |
return { | |
"__type__": "update", | |
"value": seed | |
} | |
def postprocess(speech, top_db=60, hop_length=220, win_length=440): | |
speech, _ = librosa.effects.trim( | |
speech, top_db=top_db, | |
frame_length=win_length, | |
hop_length=hop_length | |
) | |
if speech.abs().max() > max_val: | |
speech = speech / speech.abs().max() * max_val | |
speech = torch.concat([speech, torch.zeros(1, int(target_sr * 0.2))], dim=1) | |
return speech | |
def prompt_wav_recognition(prompt_wav): | |
res = get_asr().generate(input=prompt_wav, | |
language="auto", # "zn", "en", "yue", "ja", "ko", "nospeech" | |
use_itn=True, | |
) | |
text = res[0]["text"].split('|>')[-1] | |
return text | |
def generate_audio(tts_text, prompt_text, prompt_wav_upload, prompt_wav_record, seed, stream): | |
speed = 1.0 | |
if prompt_wav_upload is not None: | |
prompt_wav = prompt_wav_upload | |
elif prompt_wav_record is not None: | |
prompt_wav = prompt_wav_record | |
else: | |
prompt_wav = None | |
if prompt_text == '': | |
gr.Warning('Empty prompt found, please check the prompt text.') | |
yield (target_sr, default_data) | |
return | |
if prompt_wav is None: | |
gr.Warning('Empty prompt found, please upload or record audio.') | |
yield (target_sr, default_data) | |
return | |
info = torchaudio.info(prompt_wav) | |
if info.num_frames / info.sample_rate > 10: | |
gr.Warning('Please use prompt audio shorter than 10s.') | |
yield (target_sr, default_data) | |
return | |
if torchaudio.info(prompt_wav).sample_rate < prompt_sr: | |
gr.Warning('Prompt wav sample rate {}, lower than {}.'.format(torchaudio.info(prompt_wav).sample_rate, prompt_sr)) | |
yield (target_sr, default_data) | |
return | |
prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr)) | |
set_all_random_seed(seed) | |
for i in infer_zeroshot(tts_text, prompt_text, prompt_speech_16k, stream=stream, speed=speed): | |
yield (target_sr, i['tts_speech'].numpy().flatten()) | |
def main(): | |
with gr.Blocks() as demo: | |
gr.Markdown("### 3s Voice Clone") | |
gr.Markdown("#### Clone any voice with just 3 seconds of audio. Upload or record audio, input transcription, and click 'Speech Synthesis'.") | |
tts_text = gr.Textbox(label="Text to synthesize", lines=1, value="CosyVoice is undergoing a comprehensive upgrade, providing more accurate, stable, faster, and better voice generation capabilities.") | |
with gr.Row(): | |
prompt_wav_upload = gr.Audio(sources='upload', type='filepath', label='Prompt wav file (sample rate >= 16kHz)') | |
prompt_wav_record = gr.Audio(sources='microphone', type='filepath', label='Record prompt from your microphone') | |
prompt_text = gr.Textbox(label="Prompt Transcription", lines=1, placeholder="Prompt transcription (auto ASR, you can correct the recognition results)", value='') | |
with gr.Row(): | |
stream = gr.Radio(choices=stream_mode_list, label='Streaming or not', value=stream_mode_list[0][1]) | |
with gr.Column(scale=0.25): | |
seed_button = gr.Button(value="\U0001F3B2") | |
seed = gr.Number(value=0, label="Random Seed") | |
generate_button = gr.Button("Speech Synthesis") | |
audio_output = gr.Audio(label="Audio Output", autoplay=True, streaming=False) | |
seed_button.click(generate_seed, inputs=[], outputs=seed) | |
generate_button.click(generate_audio, | |
inputs=[tts_text, prompt_text, prompt_wav_upload, prompt_wav_record, seed, stream], | |
outputs=[audio_output]) | |
prompt_wav_upload.change(fn=prompt_wav_recognition, inputs=[prompt_wav_upload], outputs=[prompt_text]) | |
prompt_wav_record.change(fn=prompt_wav_recognition, inputs=[prompt_wav_record], outputs=[prompt_text]) | |
demo.launch(max_threads=4) | |
if __name__ == '__main__': | |
# sft_spk = cosyvoice.list_avaliable_spks() | |
prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000) | |
for stream in [True, False]: | |
for i, j in enumerate(infer_zeroshot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=stream)): | |
continue | |
prompt_sr, target_sr = 16000, 24000 | |
default_data = np.zeros(target_sr) | |
main() | |