File size: 11,140 Bytes
1f8582e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import pandas as pd
import numpy as np
import json
import os
import logging
import pickle
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.metrics import f1_score, mean_absolute_error, accuracy_score, precision_score, recall_score

logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s]: %(message)s")

class StudentRecommendationSystem:
    def __init__(self, json_dir: str = "./data"):
        self.json_dir = json_dir
        try:
            with open(os.path.join(json_dir, "subjects.json"), "r") as f:
                subjects_data = json.load(f)
                self.core_subjects = subjects_data["core_subjects"]
            logging.info("Loaded subjects data successfully.")
        except Exception as e:
            logging.error("Error loading subjects data: " + str(e))
            raise
        try:
            with open(os.path.join(json_dir, "universities.json"), "r") as f:
                universities_data = json.load(f)
                self.top_universities = universities_data["top_universities"]
            logging.info("Loaded universities data successfully.")
        except Exception as e:
            logging.error("Error loading universities data: " + str(e))
            raise
        try:
            with open(os.path.join(json_dir, "departments.json"), "r") as f:
                departments_data = json.load(f)
                self.program_departments = departments_data["program_departments"]
            logging.info("Loaded departments data successfully.")
        except Exception as e:
            logging.error("Error loading departments data: " + str(e))
            raise
        self.university_programs = {}
        for program in self.core_subjects:
            self.university_programs[program] = {"core_subjects": self.core_subjects[program]}
        logging.info("University programs mapping created.")
        self.ai_model = self._train_dummy_model()

    def _train_dummy_model(self) -> Pipeline:
        X = np.array([[0], [50], [100]])
        y = np.array([0, 50, 100])
        pipeline = Pipeline([
            ('scaler', StandardScaler()),
            ('regressor', LinearRegression())
        ])
        pipeline.fit(X, y)
        logging.info("Dummy AI model pipeline trained successfully.")
        return pipeline

    def _refine_match_score(self, score: float) -> float:
        refined = self.ai_model.predict(np.array([[score]]))[0]
        logging.debug(f"Refined score for raw score {score} is {refined}.")
        return refined

    def predict_success_probability(self, refined_score: float) -> float:
        probability = refined_score / 100.0
        logging.debug(f"Predicted success probability from refined score {refined_score} is {probability}.")
        return probability

    def load_student_grades(self, grades_data: dict = None, grades_file: str = None) -> pd.DataFrame:
        if grades_file:
            try:
                with open(grades_file, "r") as f:
                    grades_data = json.load(f)
                    if "sample_grades" in grades_data:
                        grades_data = grades_data["sample_grades"]
                logging.info(f"Student grades loaded from file: {grades_file}")
            except Exception as e:
                logging.error("Error loading student grades file: " + str(e))
                raise
        if not grades_data:
            raise ValueError("Either grades_data or grades_file must be provided")
        self.student_data = pd.DataFrame(list(grades_data.items()), columns=['Subject', 'Grade'])
        return self.student_data

    def identify_strengths(self, threshold: float = 85) -> pd.DataFrame:
        strengths = self.student_data[self.student_data['Grade'] >= threshold]
        return strengths.sort_values(by='Grade', ascending=False)

    def calculate_program_match(self, strengths: pd.DataFrame) -> pd.DataFrame:
        program_scores = {}
        for program, details in self.university_programs.items():
            score = 0
            core_subjects = details["core_subjects"]
            total_possible_score = len(core_subjects) * 100
            for subject in core_subjects:
                subject_grade = self.student_data[self.student_data['Subject'] == subject]
                if not subject_grade.empty:
                    score += subject_grade.iloc[0]['Grade']
            raw_score = (score / total_possible_score) * 100 if total_possible_score > 0 else 0
            refined_score = self._refine_match_score(raw_score)
            success_probability = self.predict_success_probability(refined_score)
            program_scores[program] = {
                "raw_score": raw_score,
                "refined_score": refined_score,
                "success_probability": success_probability
            }
            logging.debug(f"Program {program}: raw_score {raw_score}, refined_score {refined_score}, success_probability {success_probability}")
        program_df = pd.DataFrame([
            {"Program": program,
             "Raw Score": scores["raw_score"],
             "AI Refined Score": scores["refined_score"],
             "Success Probability": scores["success_probability"]}
            for program, scores in program_scores.items()
        ])
        return program_df.sort_values(by='AI Refined Score', ascending=False)

    def get_top_recommendations(self, program_matches: pd.DataFrame, top_n: int = 3) -> list:
        recommendations = []
        for i in range(min(top_n, len(program_matches))):
            program = program_matches.iloc[i]['Program']
            raw_score = program_matches.iloc[i]['Raw Score']
            refined_score = program_matches.iloc[i]['AI Refined Score']
            success_probability = program_matches.iloc[i]['Success Probability']
            if refined_score >= 50:
                universities = self.top_universities.get(program, ["No specific recommendations"])
                departments = self.program_departments.get(program, ["No specific departments"])
                recommendations.append({
                    "program": program,
                    "raw_score": raw_score,
                    "refined_score": refined_score,
                    "success_probability": success_probability,
                    "recommended_universities": universities[:3],
                    "recommended_departments": departments[:3]
                })
        return recommendations

    def evaluate_recommendations(self, program_matches_df: pd.DataFrame, ground_truth: dict, threshold: float = 60) -> dict:
        predictions = program_matches_df.apply(lambda row: 1 if row["AI Refined Score"] >= threshold else 0, axis=1).tolist()
        actuals = [ground_truth.get(program, 0) for program in program_matches_df["Program"].tolist()]
        metrics = {
            "f1_score": f1_score(actuals, predictions),
            "accuracy": accuracy_score(actuals, predictions),
            "precision": precision_score(actuals, predictions, zero_division=0),
            "recall": recall_score(actuals, predictions, zero_division=0),
            "mae": mean_absolute_error(actuals, predictions)
        }
        logging.info("Evaluation metrics computed.")
        return metrics

    def save_ai_model(self, file_path: str) -> None:
        try:
            with open(file_path, "wb") as f:
                pickle.dump(self.ai_model, f)
            logging.info(f"AI model saved to {file_path}")
        except Exception as e:
            logging.error("Error saving AI model: " + str(e))
            raise

    def load_ai_model(self, file_path: str) -> None:
        try:
            with open(file_path, "rb") as f:
                self.ai_model = pickle.load(f)
            logging.info(f"AI model loaded from {file_path}")
        except Exception as e:
            logging.error("Error loading AI model: " + str(e))
            raise

    def process_student_data(self, grades_data: dict = None, grades_file: str = None, strength_threshold: float = 85) -> dict:
        self.load_student_grades(grades_data, grades_file)
        strengths = self.identify_strengths(strength_threshold)
        program_matches = self.calculate_program_match(strengths)
        recommendations = self.get_top_recommendations(program_matches)
        report = {
            "strengths": strengths.to_dict('records'),
            "program_matches": program_matches.to_dict('records'),
            "top_recommendations": recommendations
        }
        return report

def setup_json_directory(json_dir: str = "./data") -> str:
    if not os.path.exists(json_dir):
        os.makedirs(json_dir)
    return json_dir

def main():
    json_dir = setup_json_directory()
    sample_data_file = os.path.join(json_dir, "sample-data.json")
    recommendation_system = StudentRecommendationSystem(json_dir)
    results = recommendation_system.process_student_data(grades_file=sample_data_file)
    with open(sample_data_file, "r") as f:
        sample_data = json.load(f)
        sample_grades = sample_data["sample_grades"]
    print("\n===== STUDENT ACADEMIC PROFILE =====")
    print("\nSubjects and Grades:")
    for subject in sample_grades:
        print(f"- {subject}: {sample_grades[subject]}")
    print("\n===== ACADEMIC STRENGTHS =====")
    for strength in results["strengths"]:
        print(f"- {strength['Subject']}: {strength['Grade']}")
    print("\n===== PROGRAM MATCHES (Including AI Details) =====")
    for match in results["program_matches"]:
        print(f"- {match['Program']}: Raw Score = {match['Raw Score']:.1f}%, AI Refined Score = {match['AI Refined Score']:.1f}%, Success Probability = {match['Success Probability']:.2f}")
    print("\n===== PROGRAM RECOMMENDATIONS =====")
    for i, rec in enumerate(results["top_recommendations"], 1):
        print(f"\n{i}. {rec['program']} (Raw Score: {rec['raw_score']:.1f}%, AI Refined Score: {rec['refined_score']:.1f}%, Success Probability: {rec['success_probability']:.2f})")
        print("   Recommended Universities:")
        for uni in rec['recommended_universities']:
            print(f"   - {uni}")
        print("   Recommended Departments:")
        for dept in rec['recommended_departments']:
            print(f"   - {dept}")
    program_matches_df = pd.DataFrame(results["program_matches"])
    dummy_ground_truth = {row["Program"]: (1 if row["Raw Score"] >= 65 else 0) for idx, row in program_matches_df.iterrows()}
    evaluation_metrics = recommendation_system.evaluate_recommendations(program_matches_df, dummy_ground_truth)
    print("\n===== EVALUATION METRICS =====")
    for metric, value in evaluation_metrics.items():
        print(f"{metric.capitalize()}: {value:.2f}")
    recommendation_system.save_ai_model(os.path.join(json_dir, "ai_model.pkl"))

if __name__ == "__main__":
    main()