Upload 3 files
Browse files- app.py +431 -0
- data/advice.csv +0 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,431 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import cv2
|
3 |
+
import spacy
|
4 |
+
import numpy as np
|
5 |
+
import os
|
6 |
+
import string
|
7 |
+
import csv
|
8 |
+
import random
|
9 |
+
import json
|
10 |
+
import requests
|
11 |
+
from collections import OrderedDict
|
12 |
+
from flask import Flask, request, Response
|
13 |
+
from paddleocr import PaddleOCR
|
14 |
+
from sentence_transformers import SentenceTransformer, util
|
15 |
+
from transformers import pipeline
|
16 |
+
|
17 |
+
# Ensure the language model is available
|
18 |
+
try:
|
19 |
+
import en_core_web_md
|
20 |
+
except ImportError:
|
21 |
+
print("en_core_web_md not found. Downloading now...")
|
22 |
+
import spacy.cli
|
23 |
+
spacy.cli.download("en_core_web_md")
|
24 |
+
import en_core_web_md
|
25 |
+
|
26 |
+
# Load the model using one method.
|
27 |
+
nlp = en_core_web_md.load()
|
28 |
+
|
29 |
+
# Initialize other components
|
30 |
+
ochr = PaddleOCR(use_angle_cls=True, lang='en')
|
31 |
+
sbert_model = SentenceTransformer("all-mpnet-base-v2")
|
32 |
+
entailment_classifier = pipeline(
|
33 |
+
"text-classification",
|
34 |
+
model="roberta-large-mnli",
|
35 |
+
return_all_scores=True
|
36 |
+
)
|
37 |
+
|
38 |
+
app = Flask(__name__)
|
39 |
+
|
40 |
+
def classify_subject(question, candidate_labels=None):
|
41 |
+
if candidate_labels is None:
|
42 |
+
candidate_labels = ["Math", "Science", "History", "Literature", "Geography", "Art"]
|
43 |
+
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
44 |
+
result = classifier(question, candidate_labels)
|
45 |
+
return result["labels"][0]
|
46 |
+
|
47 |
+
def load_advice(filename):
|
48 |
+
advice_list = []
|
49 |
+
try:
|
50 |
+
with open(filename, newline='', encoding='utf-8') as csvfile:
|
51 |
+
reader = csv.DictReader(csvfile)
|
52 |
+
for row in reader:
|
53 |
+
advice_list.append({
|
54 |
+
"min_score": float(row["min_score"]),
|
55 |
+
"max_score": float(row["max_score"]),
|
56 |
+
"subject": row["subject"],
|
57 |
+
"advice_parent": row["advice_parent"],
|
58 |
+
"advice_teacher": row["advice_teacher"],
|
59 |
+
"study_plan": row["study_plan"],
|
60 |
+
"recommended_books": row["recommended_books"]
|
61 |
+
})
|
62 |
+
except Exception as e:
|
63 |
+
print("Advice file error:", e)
|
64 |
+
return advice_list
|
65 |
+
|
66 |
+
def get_advice(score, subject, advice_list):
|
67 |
+
filtered = [a for a in advice_list
|
68 |
+
if a["subject"].lower() == subject.lower()
|
69 |
+
and a["min_score"] <= score <= a["max_score"]]
|
70 |
+
if filtered:
|
71 |
+
return random.choice(filtered)
|
72 |
+
return {
|
73 |
+
"advice_parent": "No parent advice available.",
|
74 |
+
"advice_teacher": "No teacher advice available.",
|
75 |
+
"study_plan": "No study plan available.",
|
76 |
+
"recommended_books": "No books available."
|
77 |
+
}
|
78 |
+
|
79 |
+
def ocr_from_array(image):
|
80 |
+
image = np.ascontiguousarray(image)
|
81 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
82 |
+
result = ochr.ocr(gray, cls=True)
|
83 |
+
return "\n".join([line[1][0] for line in result[0]])
|
84 |
+
|
85 |
+
def preprocess_text(text):
|
86 |
+
return " ".join(
|
87 |
+
token.lemma_ for token in nlp(text.lower())
|
88 |
+
if not token.is_stop and not token.is_punct
|
89 |
+
)
|
90 |
+
|
91 |
+
def text_to_vector_sbert(text):
|
92 |
+
return sbert_model.encode(text, convert_to_tensor=True)
|
93 |
+
|
94 |
+
def compute_similarity(text1, text2):
|
95 |
+
return util.pytorch_cos_sim(
|
96 |
+
text_to_vector_sbert(text1),
|
97 |
+
text_to_vector_sbert(text2)
|
98 |
+
).item()
|
99 |
+
|
100 |
+
def contains_keyword(reference, student):
|
101 |
+
tr = str.maketrans('', '', string.punctuation)
|
102 |
+
return bool(
|
103 |
+
set(reference.lower().translate(tr).split()) &
|
104 |
+
set(student.lower().translate(tr).split())
|
105 |
+
)
|
106 |
+
|
107 |
+
def check_entailment(student, reference):
|
108 |
+
scores = entailment_classifier(f"{student} </s></s> {reference}", truncation=True)
|
109 |
+
for item in scores[0]:
|
110 |
+
if item["label"] == "ENTAILMENT":
|
111 |
+
return item["score"]
|
112 |
+
return 0.0
|
113 |
+
|
114 |
+
def entity_match(ref_ans, stud_ans):
|
115 |
+
return bool({ent.text.lower() for ent in nlp(ref_ans).ents} &
|
116 |
+
{ent.text.lower() for ent in nlp(stud_ans).ents})
|
117 |
+
|
118 |
+
def extract_numbers(text):
|
119 |
+
nums = set(re.findall(r'\d+', text))
|
120 |
+
words = {"zero": "0", "one": "1", "two": "2", "three": "3",
|
121 |
+
"four": "4", "five": "5", "six": "6", "seven": "7",
|
122 |
+
"eight": "8", "nine": "9", "ten": "10"}
|
123 |
+
for w in text.lower().split():
|
124 |
+
tok = w.strip(string.punctuation)
|
125 |
+
if tok in words:
|
126 |
+
nums.add(words[tok])
|
127 |
+
return nums
|
128 |
+
|
129 |
+
def is_year(text):
|
130 |
+
clean = text.strip().replace(".", "")
|
131 |
+
years = re.findall(r'\d{4}', clean)
|
132 |
+
return len(years) == 1 and re.sub(r'\d{4}', '', clean).strip(string.punctuation + " ") == ""
|
133 |
+
|
134 |
+
def advanced_grade(ref_ans, stud_ans, similarity, threshold=0.8, max_grade=100):
|
135 |
+
min_corr, min_inc = 50, 30
|
136 |
+
tr = str.maketrans('', '', string.punctuation)
|
137 |
+
r = ref_ans.lower().translate(tr).strip()
|
138 |
+
s = stud_ans.lower().translate(tr).strip()
|
139 |
+
base = similarity * max_grade
|
140 |
+
if is_year(ref_ans):
|
141 |
+
ref_years = re.findall(r'\d{4}', ref_ans)
|
142 |
+
stud_years = re.findall(r'\d{4}', stud_ans)
|
143 |
+
if not stud_years or ref_years[0] != stud_years[0]:
|
144 |
+
grade = min_inc if contains_keyword(ref_ans, stud_ans) else 0
|
145 |
+
mark = "Incorrect"
|
146 |
+
else:
|
147 |
+
grade, mark = max_grade, "Correct"
|
148 |
+
elif r == s or (len(s.split()) <= 3 and contains_keyword(ref_ans, stud_ans)) or \
|
149 |
+
(extract_numbers(stud_ans) & extract_numbers(ref_ans)) or \
|
150 |
+
check_entailment(stud_ans, ref_ans) > 0.9:
|
151 |
+
grade, mark = max_grade, "Correct"
|
152 |
+
elif entity_match(ref_ans, stud_ans) or (contains_keyword(ref_ans, stud_ans) and similarity < threshold):
|
153 |
+
grade = max(base, threshold * max_grade)
|
154 |
+
mark = "Correct"
|
155 |
+
elif contains_keyword(ref_ans, stud_ans) or similarity >= threshold:
|
156 |
+
grade = min(base + 10, max_grade)
|
157 |
+
mark = "Correct"
|
158 |
+
else:
|
159 |
+
grade = max(base, min_inc) if contains_keyword(ref_ans, stud_ans) else base
|
160 |
+
mark = "Incorrect"
|
161 |
+
if mark == "Correct":
|
162 |
+
rw, sw = len(ref_ans.split()), len(stud_ans.split())
|
163 |
+
if rw > 0 and sw < rw:
|
164 |
+
grade = max(min_corr, grade * (sw / rw))
|
165 |
+
return grade, mark
|
166 |
+
|
167 |
+
def correct_token(token):
|
168 |
+
rep = {'o':'0','O':'0','l':'1','I':'1','|':'1','z':'2','Z':'2',
|
169 |
+
'e':'3','E':'3','a':'4','A':'4','y':'4','Y':'4','s':'5','S':'5',
|
170 |
+
'g':'6','G':'6','t':'7','T':'7','b':'8','B':'8','q':'9','Q':'9'}
|
171 |
+
return ''.join(rep.get(c, c) for c in token)
|
172 |
+
|
173 |
+
def fix_question_prefix(line):
|
174 |
+
if not line:
|
175 |
+
return line
|
176 |
+
first, rest = line[0], line[1:]
|
177 |
+
mapping = {'I': '1', 'l': '1', '|': '1', 'S': '5', 's': '5'}
|
178 |
+
if first in mapping and rest and rest[0] in ".- )":
|
179 |
+
return mapping[first] + rest
|
180 |
+
return line
|
181 |
+
|
182 |
+
def parse_reference_answers(text):
|
183 |
+
ref_dict = {}
|
184 |
+
lines = text.splitlines()
|
185 |
+
current_question = None
|
186 |
+
question_text = ""
|
187 |
+
answer_text = ""
|
188 |
+
i = 0
|
189 |
+
while i < len(lines):
|
190 |
+
raw_line = lines[i]
|
191 |
+
line = fix_question_prefix(raw_line).strip()
|
192 |
+
if not line:
|
193 |
+
i += 1
|
194 |
+
continue
|
195 |
+
q_match = re.match(r'^(\d+)[\s\.\-]+(.+)', line)
|
196 |
+
if q_match:
|
197 |
+
if current_question is not None and question_text:
|
198 |
+
ref_dict[current_question] = {"question": question_text.strip(), "answer": answer_text.strip()}
|
199 |
+
current_question = int(q_match.group(1))
|
200 |
+
question_text = q_match.group(2).strip()
|
201 |
+
answer_text = ""
|
202 |
+
if i + 1 < len(lines) and "answer" in lines[i+1].lower():
|
203 |
+
answer_line = fix_question_prefix(lines[i+1]).strip()
|
204 |
+
answer_match = re.match(r'^answer:?[ \t]*(.+)', answer_line, re.IGNORECASE)
|
205 |
+
if answer_match:
|
206 |
+
answer_text = answer_match.group(1).strip()
|
207 |
+
i += 2
|
208 |
+
continue
|
209 |
+
i += 1
|
210 |
+
continue
|
211 |
+
a_match = re.match(r'^answer:?[ \t]*(.+)', line, re.IGNORECASE)
|
212 |
+
if a_match and current_question is not None:
|
213 |
+
answer_text = a_match.group(1).strip()
|
214 |
+
i += 1
|
215 |
+
continue
|
216 |
+
if current_question is not None:
|
217 |
+
if not answer_text:
|
218 |
+
question_text += " " + line
|
219 |
+
else:
|
220 |
+
answer_text += " " + line
|
221 |
+
i += 1
|
222 |
+
if current_question is not None and question_text:
|
223 |
+
ref_dict[current_question] = {"question": question_text.strip(), "answer": answer_text.strip()}
|
224 |
+
for q in ref_dict:
|
225 |
+
if not ref_dict[q]["question"].strip().endswith('?'):
|
226 |
+
ref_dict[q]["question"] += '?'
|
227 |
+
return ref_dict
|
228 |
+
|
229 |
+
def parse_student_answers(text):
|
230 |
+
stud_dict = {}
|
231 |
+
lines = text.splitlines()
|
232 |
+
for line in lines:
|
233 |
+
line = line.strip()
|
234 |
+
if not line:
|
235 |
+
continue
|
236 |
+
match = re.match(r'^(\d+)[\s\.\-]+(.+)', line)
|
237 |
+
if match:
|
238 |
+
stud_dict[int(match.group(1))] = match.group(2).strip()
|
239 |
+
continue
|
240 |
+
match = re.match(r'^(\d+)[\.|\)][\s]*(.+)', line)
|
241 |
+
if match:
|
242 |
+
stud_dict[int(match.group(1))] = match.group(2).strip()
|
243 |
+
return stud_dict
|
244 |
+
|
245 |
+
def print_parsed_answers(ref_dict, stud_dict):
|
246 |
+
print("\n" + "="*80)
|
247 |
+
print("PARSED QUESTIONS AND ANSWERS".center(80))
|
248 |
+
print("="*80)
|
249 |
+
for q in sorted(ref_dict.keys()):
|
250 |
+
print(f"\nQuestion {q}:")
|
251 |
+
print(f" Question text: {ref_dict[q]['question']}")
|
252 |
+
print(f" Reference answer: {ref_dict[q]['answer']}")
|
253 |
+
print(f" Student answer: {stud_dict.get(q, 'No answer provided')}")
|
254 |
+
print("\nMissing reference questions:", set(stud_dict.keys()) - set(ref_dict.keys()))
|
255 |
+
print("Missing student answers:", set(ref_dict.keys()) - set(stud_dict.keys()))
|
256 |
+
print("="*80 + "\n")
|
257 |
+
|
258 |
+
def display_results_in_terminal(results, mcq_results=None):
|
259 |
+
print("\n" + "="*80)
|
260 |
+
print("GRADING DETAILS".center(80))
|
261 |
+
print("="*80)
|
262 |
+
if results:
|
263 |
+
print("\nFREE-TEXT ANSWERS GRADING:\n")
|
264 |
+
for r in results:
|
265 |
+
print(f"Question {r['Question Number']}:")
|
266 |
+
print(f" Subject: {r['Subject']}")
|
267 |
+
print(f" Similarity Score: {r['Similarity']:.2f}")
|
268 |
+
print(f" Grade: {r['Grade']:.1f}")
|
269 |
+
print(f" Mark: {r['Mark']}")
|
270 |
+
print("-"*70)
|
271 |
+
if mcq_results:
|
272 |
+
print("\nMCQ ANSWERS GRADING:\n")
|
273 |
+
print(f"Correct Questions: {mcq_results['Correct Questions']}")
|
274 |
+
print(f"Incorrect Questions: {mcq_results['Incorrect Questions']}")
|
275 |
+
print(f"Total Grade: {mcq_results['Total Grade']:.1f}")
|
276 |
+
print(f"Letter Grade: {mcq_results['Letter Grade']}")
|
277 |
+
print("="*80 + "\n")
|
278 |
+
|
279 |
+
def grade_answers(ref_dict, stud_dict, advice_list, threshold=0.8, max_grade=100):
|
280 |
+
results, total, p_adv, t_adv = [], 0, "", ""
|
281 |
+
for q in sorted(ref_dict):
|
282 |
+
entry = ref_dict[q]
|
283 |
+
sim = compute_similarity(
|
284 |
+
preprocess_text(entry['answer']),
|
285 |
+
preprocess_text(stud_dict.get(q, ''))
|
286 |
+
)
|
287 |
+
grade, mark = advanced_grade(entry['answer'], stud_dict.get(q, ''), sim, threshold, max_grade)
|
288 |
+
total += grade
|
289 |
+
adv = get_advice(grade, classify_subject(entry['question']), advice_list)
|
290 |
+
if not p_adv and adv['advice_parent']:
|
291 |
+
p_adv = adv['advice_parent']
|
292 |
+
if not t_adv and adv['advice_teacher']:
|
293 |
+
t_adv = adv['advice_teacher']
|
294 |
+
results.append(OrderedDict([
|
295 |
+
("Question Number", q),
|
296 |
+
("Question", entry['question']),
|
297 |
+
("Subject", classify_subject(entry['question'])),
|
298 |
+
("Reference", entry['answer']),
|
299 |
+
("Student", stud_dict.get(q, 'No answer provided')),
|
300 |
+
("Similarity", sim),
|
301 |
+
("Grade", grade),
|
302 |
+
("Mark", mark),
|
303 |
+
("Advice for Parents", adv['advice_parent']),
|
304 |
+
("Advice for Teachers", adv['advice_teacher']),
|
305 |
+
("Study Plan", adv['study_plan']),
|
306 |
+
("Recommended Books", adv['recommended_books'])
|
307 |
+
]))
|
308 |
+
overall = total / len(ref_dict) if ref_dict else 0
|
309 |
+
display_results_in_terminal(results)
|
310 |
+
return results, overall, numeric_to_letter_grade(overall), \
|
311 |
+
(p_adv or "Encourage your child to review areas where they struggled."), \
|
312 |
+
(t_adv or "Consider focusing additional instruction on areas where the student showed weakness.")
|
313 |
+
|
314 |
+
def extract_mcq_answers_from_image(image, num_questions=None):
|
315 |
+
margin, vgap, header = 50, 60, 60
|
316 |
+
if num_questions is None:
|
317 |
+
num_questions = (image.shape[0] - 2*margin - header) // vgap
|
318 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) if len(image.shape) == 3 else image
|
319 |
+
_, thresh = cv2.threshold(gray, 200, 255, cv2.THRESH_BINARY)
|
320 |
+
answers = {}
|
321 |
+
for i in range(1, num_questions + 1):
|
322 |
+
y = margin + header + (i - 1) * vgap
|
323 |
+
for idx, opt in enumerate(["A", "B", "C", "D"]):
|
324 |
+
x = margin + 50 + idx * 100
|
325 |
+
r = 15
|
326 |
+
reg = thresh[y-r:y+r, x-r:x+r]
|
327 |
+
if reg.size and np.mean(reg) < 150:
|
328 |
+
answers[i] = opt
|
329 |
+
break
|
330 |
+
return answers
|
331 |
+
|
332 |
+
def numeric_to_letter_grade(grade):
|
333 |
+
if grade >= 90: return "A+"
|
334 |
+
if grade >= 85: return "A"
|
335 |
+
if grade >= 80: return "A-"
|
336 |
+
if grade >= 75: return "B+"
|
337 |
+
if grade >= 70: return "B"
|
338 |
+
if grade >= 65: return "B-"
|
339 |
+
if grade >= 60: return "C+"
|
340 |
+
if grade >= 50: return "C"
|
341 |
+
if grade >= 40: return "D+"
|
342 |
+
if grade >= 30: return "D"
|
343 |
+
return "F"
|
344 |
+
|
345 |
+
def grade_mcq_answers(correct_dict, student_dict, points_per_question=1):
|
346 |
+
correct, incorrect = [], []
|
347 |
+
score = 0
|
348 |
+
for q in sorted(correct_dict):
|
349 |
+
if student_dict.get(q) == correct_dict[q]:
|
350 |
+
correct.append(q)
|
351 |
+
score += points_per_question
|
352 |
+
else:
|
353 |
+
incorrect.append(q)
|
354 |
+
total = (score / (len(correct_dict) * points_per_question)) * 100 if correct_dict else 0
|
355 |
+
return {"Correct Questions": correct,
|
356 |
+
"Incorrect Questions": incorrect,
|
357 |
+
"Total Grade": total,
|
358 |
+
"Letter Grade": numeric_to_letter_grade(total)}
|
359 |
+
|
360 |
+
def generate_random_id():
|
361 |
+
return random.randint(10000, 99999)
|
362 |
+
|
363 |
+
@app.route('/grade_exam', methods=['POST'])
|
364 |
+
def grade_exam():
|
365 |
+
if 'ref_image' not in request.files or 'stud_image' not in request.files:
|
366 |
+
return Response(json.dumps({"Error": "Missing one or both image files."}), status=400, mimetype='application/json')
|
367 |
+
ref_file = request.files['ref_image']
|
368 |
+
stud_file = request.files['stud_image']
|
369 |
+
ref_bytes = np.frombuffer(ref_file.read(), np.uint8)
|
370 |
+
stud_bytes = np.frombuffer(stud_file.read(), np.uint8)
|
371 |
+
ref_img = cv2.imdecode(ref_bytes, cv2.IMREAD_COLOR)
|
372 |
+
stud_img = cv2.imdecode(stud_bytes, cv2.IMREAD_COLOR)
|
373 |
+
if ref_img is None or stud_img is None:
|
374 |
+
return Response(json.dumps({"Error": "One or both images could not be processed."}), status=400, mimetype='application/json')
|
375 |
+
margin, vgap, header = 50, 60, 60
|
376 |
+
computed_questions = (ref_img.shape[0] - 2*margin - header) // vgap
|
377 |
+
mcq_ref = extract_mcq_answers_from_image(ref_img, num_questions=computed_questions)
|
378 |
+
mcq_stud = extract_mcq_answers_from_image(stud_img, num_questions=computed_questions)
|
379 |
+
if len(mcq_ref) >= computed_questions // 2 and len(mcq_stud) >= computed_questions // 2:
|
380 |
+
mcq_result = grade_mcq_answers(mcq_ref, mcq_stud)
|
381 |
+
total_grade = mcq_result["Total Grade"]
|
382 |
+
letter_grade = mcq_result["Letter Grade"]
|
383 |
+
parent_advice = "Review incorrect answers with your child and focus on identified knowledge gaps."
|
384 |
+
teacher_advice = "Consider revisiting topics with high error rates in upcoming lessons."
|
385 |
+
display_results_in_terminal(None, mcq_result)
|
386 |
+
else:
|
387 |
+
advice_file = 'data/advice.csv'
|
388 |
+
ref_text = ocr_from_array(ref_img)
|
389 |
+
stud_text = ocr_from_array(stud_img)
|
390 |
+
ref_answers = parse_reference_answers(ref_text)
|
391 |
+
stud_answers = parse_student_answers(stud_text)
|
392 |
+
print_parsed_answers(ref_answers, stud_answers)
|
393 |
+
advice_list = load_advice(advice_file)
|
394 |
+
results, total_grade, letter_grade, parent_advice, teacher_advice = grade_answers(
|
395 |
+
ref_answers, stud_answers, advice_list, threshold=0.8, max_grade=100
|
396 |
+
)
|
397 |
+
exam_id = request.form.get("examId")
|
398 |
+
student_idg = request.form.get("StudentIDg")
|
399 |
+
parent_id = request.form.get("parentId")
|
400 |
+
teacher_id = request.form.get("teacherId")
|
401 |
+
grade_payload = {
|
402 |
+
"id": str(generate_random_id()),
|
403 |
+
"examId": exam_id,
|
404 |
+
"obtainedMarks": str(total_grade),
|
405 |
+
"grade": letter_grade,
|
406 |
+
"StudentIDg": student_idg
|
407 |
+
}
|
408 |
+
advice_payload = {
|
409 |
+
"id": str(generate_random_id()),
|
410 |
+
"parentAdvice": parent_advice,
|
411 |
+
"teacherAdvice": teacher_advice,
|
412 |
+
"parentId": parent_id,
|
413 |
+
"teacherId": teacher_id
|
414 |
+
}
|
415 |
+
try:
|
416 |
+
grade_resp = requests.post("http://54.242.19.19:3000/api/grades/", json=grade_payload)
|
417 |
+
advice_resp = requests.post("http://54.242.19.19:3000/api/advices/create/", json=advice_payload)
|
418 |
+
print("β Posted grade payload:", json.dumps(grade_payload, indent=2))
|
419 |
+
print("β Grade API response:", grade_resp.status_code, grade_resp.text)
|
420 |
+
print("β Posted advice payload:", json.dumps(advice_payload, indent=2))
|
421 |
+
print("β Advice API response:", advice_resp.status_code, advice_resp.text)
|
422 |
+
except Exception as e:
|
423 |
+
print("Error sending to external APIs:", e)
|
424 |
+
return Response(
|
425 |
+
json.dumps({"status": "ok", "message": "Grade and advice sent to external services."}),
|
426 |
+
status=200, mimetype="application/json"
|
427 |
+
)
|
428 |
+
|
429 |
+
if __name__ == '__main__':
|
430 |
+
port = int(os.environ.get("PORT", 7860))
|
431 |
+
app.run(host="0.0.0.0", port=port, debug=False)
|
data/advice.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
opencv-python-headless
|
3 |
+
spacy
|
4 |
+
flask
|
5 |
+
paddleocr
|
6 |
+
paddlepaddle
|
7 |
+
sentence-transformers
|
8 |
+
transformers
|