import re import cv2 import spacy import numpy as np import os import string import csv import random import json import requests from collections import OrderedDict from flask import Flask, request, Response from paddleocr import PaddleOCR from sentence_transformers import SentenceTransformer, util from transformers import pipeline # Ensure the language model is available try: import en_core_web_md except ImportError: print("en_core_web_md not found. Downloading now...") import spacy.cli spacy.cli.download("en_core_web_md") import en_core_web_md # Load the model using one method. nlp = en_core_web_md.load() # Initialize other components ochr = PaddleOCR(use_angle_cls=True, lang='en') sbert_model = SentenceTransformer("all-mpnet-base-v2") entailment_classifier = pipeline( "text-classification", model="roberta-large-mnli", return_all_scores=True ) app = Flask(__name__) def classify_subject(question, candidate_labels=None): if candidate_labels is None: candidate_labels = ["Math", "Science", "History", "Literature", "Geography", "Art"] classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") result = classifier(question, candidate_labels) return result["labels"][0] def load_advice(filename): advice_list = [] try: with open(filename, newline='', encoding='utf-8') as csvfile: reader = csv.DictReader(csvfile) for row in reader: advice_list.append({ "min_score": float(row["min_score"]), "max_score": float(row["max_score"]), "subject": row["subject"], "advice_parent": row["advice_parent"], "advice_teacher": row["advice_teacher"], "study_plan": row["study_plan"], "recommended_books": row["recommended_books"] }) except Exception as e: print("Advice file error:", e) return advice_list def get_advice(score, subject, advice_list): filtered = [a for a in advice_list if a["subject"].lower() == subject.lower() and a["min_score"] <= score <= a["max_score"]] if filtered: return random.choice(filtered) return { "advice_parent": "No parent advice available.", "advice_teacher": "No teacher advice available.", "study_plan": "No study plan available.", "recommended_books": "No books available." } def ocr_from_array(image): image = np.ascontiguousarray(image) try: gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) except Exception as e: print("Error converting image to grayscale:", e) return "" result = ochr.ocr(gray, cls=True) # If result is None or empty, log and return an empty string. if not result or not result[0]: print("PaddleOCR returned no results for this image.") return "" # Join the detected text parts. try: # This assumes result[0] contains the OCR detections for the image. return "\n".join([line[1][0] for line in result[0]]) except Exception as e: print("Error processing OCR result:", e) return "" def preprocess_text(text): return " ".join( token.lemma_ for token in nlp(text.lower()) if not token.is_stop and not token.is_punct ) def text_to_vector_sbert(text): return sbert_model.encode(text, convert_to_tensor=True) def compute_similarity(text1, text2): return util.pytorch_cos_sim( text_to_vector_sbert(text1), text_to_vector_sbert(text2) ).item() def contains_keyword(reference, student): tr = str.maketrans('', '', string.punctuation) return bool( set(reference.lower().translate(tr).split()) & set(student.lower().translate(tr).split()) ) def check_entailment(student, reference): scores = entailment_classifier(f"{student} {reference}", truncation=True) for item in scores[0]: if item["label"] == "ENTAILMENT": return item["score"] return 0.0 def entity_match(ref_ans, stud_ans): return bool({ent.text.lower() for ent in nlp(ref_ans).ents} & {ent.text.lower() for ent in nlp(stud_ans).ents}) def extract_numbers(text): nums = set(re.findall(r'\d+', text)) words = {"zero": "0", "one": "1", "two": "2", "three": "3", "four": "4", "five": "5", "six": "6", "seven": "7", "eight": "8", "nine": "9", "ten": "10"} for w in text.lower().split(): tok = w.strip(string.punctuation) if tok in words: nums.add(words[tok]) return nums def is_year(text): clean = text.strip().replace(".", "") years = re.findall(r'\d{4}', clean) return len(years) == 1 and re.sub(r'\d{4}', '', clean).strip(string.punctuation + " ") == "" def advanced_grade(ref_ans, stud_ans, similarity, threshold=0.8, max_grade=100): min_corr, min_inc = 50, 30 tr = str.maketrans('', '', string.punctuation) r = ref_ans.lower().translate(tr).strip() s = stud_ans.lower().translate(tr).strip() base = similarity * max_grade if is_year(ref_ans): ref_years = re.findall(r'\d{4}', ref_ans) stud_years = re.findall(r'\d{4}', stud_ans) if not stud_years or ref_years[0] != stud_years[0]: grade = min_inc if contains_keyword(ref_ans, stud_ans) else 0 mark = "Incorrect" else: grade, mark = max_grade, "Correct" elif r == s or (len(s.split()) <= 3 and contains_keyword(ref_ans, stud_ans)) or \ (extract_numbers(stud_ans) & extract_numbers(ref_ans)) or \ check_entailment(stud_ans, ref_ans) > 0.9: grade, mark = max_grade, "Correct" elif entity_match(ref_ans, stud_ans) or (contains_keyword(ref_ans, stud_ans) and similarity < threshold): grade = max(base, threshold * max_grade) mark = "Correct" elif contains_keyword(ref_ans, stud_ans) or similarity >= threshold: grade = min(base + 10, max_grade) mark = "Correct" else: grade = max(base, min_inc) if contains_keyword(ref_ans, stud_ans) else base mark = "Incorrect" if mark == "Correct": rw, sw = len(ref_ans.split()), len(stud_ans.split()) if rw > 0 and sw < rw: grade = max(min_corr, grade * (sw / rw)) return grade, mark def correct_token(token): rep = {'o':'0','O':'0','l':'1','I':'1','|':'1','z':'2','Z':'2', 'e':'3','E':'3','a':'4','A':'4','y':'4','Y':'4','s':'5','S':'5', 'g':'6','G':'6','t':'7','T':'7','b':'8','B':'8','q':'9','Q':'9'} return ''.join(rep.get(c, c) for c in token) def fix_question_prefix(line): if not line: return line first, rest = line[0], line[1:] mapping = {'I': '1', 'l': '1', '|': '1', 'S': '5', 's': '5'} if first in mapping and rest and rest[0] in ".- )": return mapping[first] + rest return line def parse_reference_answers(text): ref_dict = {} lines = text.splitlines() current_question = None question_text = "" answer_text = "" i = 0 while i < len(lines): raw_line = lines[i] line = fix_question_prefix(raw_line).strip() if not line: i += 1 continue q_match = re.match(r'^(\d+)[\s\.\-]+(.+)', line) if q_match: if current_question is not None and question_text: ref_dict[current_question] = {"question": question_text.strip(), "answer": answer_text.strip()} current_question = int(q_match.group(1)) question_text = q_match.group(2).strip() answer_text = "" if i + 1 < len(lines) and "answer" in lines[i+1].lower(): answer_line = fix_question_prefix(lines[i+1]).strip() answer_match = re.match(r'^answer:?[ \t]*(.+)', answer_line, re.IGNORECASE) if answer_match: answer_text = answer_match.group(1).strip() i += 2 continue i += 1 continue a_match = re.match(r'^answer:?[ \t]*(.+)', line, re.IGNORECASE) if a_match and current_question is not None: answer_text = a_match.group(1).strip() i += 1 continue if current_question is not None: if not answer_text: question_text += " " + line else: answer_text += " " + line i += 1 if current_question is not None and question_text: ref_dict[current_question] = {"question": question_text.strip(), "answer": answer_text.strip()} for q in ref_dict: if not ref_dict[q]["question"].strip().endswith('?'): ref_dict[q]["question"] += '?' return ref_dict def parse_student_answers(text): stud_dict = {} lines = text.splitlines() for line in lines: line = line.strip() if not line: continue match = re.match(r'^(\d+)[\s\.\-]+(.+)', line) if match: stud_dict[int(match.group(1))] = match.group(2).strip() continue match = re.match(r'^(\d+)[\.|\)][\s]*(.+)', line) if match: stud_dict[int(match.group(1))] = match.group(2).strip() return stud_dict def print_parsed_answers(ref_dict, stud_dict): print("\n" + "="*80) print("PARSED QUESTIONS AND ANSWERS".center(80)) print("="*80) for q in sorted(ref_dict.keys()): print(f"\nQuestion {q}:") print(f" Question text: {ref_dict[q]['question']}") print(f" Reference answer: {ref_dict[q]['answer']}") print(f" Student answer: {stud_dict.get(q, 'No answer provided')}") print("\nMissing reference questions:", set(stud_dict.keys()) - set(ref_dict.keys())) print("Missing student answers:", set(ref_dict.keys()) - set(stud_dict.keys())) print("="*80 + "\n") def display_results_in_terminal(results, mcq_results=None): print("\n" + "="*80) print("GRADING DETAILS".center(80)) print("="*80) if results: print("\nFREE-TEXT ANSWERS GRADING:\n") for r in results: print(f"Question {r['Question Number']}:") print(f" Subject: {r['Subject']}") print(f" Similarity Score: {r['Similarity']:.2f}") print(f" Grade: {r['Grade']:.1f}") print(f" Mark: {r['Mark']}") print("-"*70) if mcq_results: print("\nMCQ ANSWERS GRADING:\n") print(f"Correct Questions: {mcq_results['Correct Questions']}") print(f"Incorrect Questions: {mcq_results['Incorrect Questions']}") print(f"Total Grade: {mcq_results['Total Grade']:.1f}") print(f"Letter Grade: {mcq_results['Letter Grade']}") print("="*80 + "\n") def grade_answers(ref_dict, stud_dict, advice_list, threshold=0.8, max_grade=100): results, total, p_adv, t_adv = [], 0, "", "" for q in sorted(ref_dict): entry = ref_dict[q] sim = compute_similarity( preprocess_text(entry['answer']), preprocess_text(stud_dict.get(q, '')) ) grade, mark = advanced_grade(entry['answer'], stud_dict.get(q, ''), sim, threshold, max_grade) total += grade adv = get_advice(grade, classify_subject(entry['question']), advice_list) if not p_adv and adv['advice_parent']: p_adv = adv['advice_parent'] if not t_adv and adv['advice_teacher']: t_adv = adv['advice_teacher'] results.append(OrderedDict([ ("Question Number", q), ("Question", entry['question']), ("Subject", classify_subject(entry['question'])), ("Reference", entry['answer']), ("Student", stud_dict.get(q, 'No answer provided')), ("Similarity", sim), ("Grade", grade), ("Mark", mark), ("Advice for Parents", adv['advice_parent']), ("Advice for Teachers", adv['advice_teacher']), ("Study Plan", adv['study_plan']), ("Recommended Books", adv['recommended_books']) ])) overall = total / len(ref_dict) if ref_dict else 0 display_results_in_terminal(results) return results, overall, numeric_to_letter_grade(overall), \ (p_adv or "Encourage your child to review areas where they struggled."), \ (t_adv or "Consider focusing additional instruction on areas where the student showed weakness.") def extract_mcq_answers_from_image(image, num_questions=None): margin, vgap, header = 50, 60, 60 if num_questions is None: num_questions = (image.shape[0] - 2*margin - header) // vgap gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) if len(image.shape) == 3 else image _, thresh = cv2.threshold(gray, 200, 255, cv2.THRESH_BINARY) answers = {} for i in range(1, num_questions + 1): y = margin + header + (i - 1) * vgap for idx, opt in enumerate(["A", "B", "C", "D"]): x = margin + 50 + idx * 100 r = 15 reg = thresh[y-r:y+r, x-r:x+r] if reg.size and np.mean(reg) < 150: answers[i] = opt break return answers def numeric_to_letter_grade(grade): if grade >= 90: return "A+" if grade >= 85: return "A" if grade >= 80: return "A-" if grade >= 75: return "B+" if grade >= 70: return "B" if grade >= 65: return "B-" if grade >= 60: return "C+" if grade >= 50: return "C" if grade >= 40: return "D+" if grade >= 30: return "D" return "F" def grade_mcq_answers(correct_dict, student_dict, points_per_question=1): correct, incorrect = [], [] score = 0 for q in sorted(correct_dict): if student_dict.get(q) == correct_dict[q]: correct.append(q) score += points_per_question else: incorrect.append(q) total = (score / (len(correct_dict) * points_per_question)) * 100 if correct_dict else 0 return {"Correct Questions": correct, "Incorrect Questions": incorrect, "Total Grade": total, "Letter Grade": numeric_to_letter_grade(total)} def generate_random_id(): return random.randint(10000, 99999) @app.route('/grade_exam', methods=['POST']) def grade_exam(): if 'ref_image' not in request.files or 'stud_image' not in request.files: return Response(json.dumps({"Error": "Missing one or both image files."}), status=400, mimetype='application/json') ref_file = request.files['ref_image'] stud_file = request.files['stud_image'] ref_bytes = np.frombuffer(ref_file.read(), np.uint8) stud_bytes = np.frombuffer(stud_file.read(), np.uint8) ref_img = cv2.imdecode(ref_bytes, cv2.IMREAD_COLOR) stud_img = cv2.imdecode(stud_bytes, cv2.IMREAD_COLOR) if ref_img is None or stud_img is None: return Response(json.dumps({"Error": "One or both images could not be processed."}), status=400, mimetype='application/json') margin, vgap, header = 50, 60, 60 computed_questions = (ref_img.shape[0] - 2*margin - header) // vgap mcq_ref = extract_mcq_answers_from_image(ref_img, num_questions=computed_questions) mcq_stud = extract_mcq_answers_from_image(stud_img, num_questions=computed_questions) if len(mcq_ref) >= computed_questions // 2 and len(mcq_stud) >= computed_questions // 2: mcq_result = grade_mcq_answers(mcq_ref, mcq_stud) total_grade = mcq_result["Total Grade"] letter_grade = mcq_result["Letter Grade"] parent_advice = "Review incorrect answers with your child and focus on identified knowledge gaps." teacher_advice = "Consider revisiting topics with high error rates in upcoming lessons." display_results_in_terminal(None, mcq_result) else: advice_file = 'data/advice.csv' ref_text = ocr_from_array(ref_img) stud_text = ocr_from_array(stud_img) ref_answers = parse_reference_answers(ref_text) stud_answers = parse_student_answers(stud_text) print_parsed_answers(ref_answers, stud_answers) advice_list = load_advice(advice_file) results, total_grade, letter_grade, parent_advice, teacher_advice = grade_answers( ref_answers, stud_answers, advice_list, threshold=0.8, max_grade=100 ) exam_id = request.form.get("examId") student_idg = request.form.get("StudentIDg") parent_id = request.form.get("parentId") teacher_id = request.form.get("teacherId") grade_payload = { "id": str(generate_random_id()), "examId": exam_id, "obtainedMarks": str(total_grade), "grade": letter_grade, "StudentIDg": student_idg } advice_payload = { "id": str(generate_random_id()), "parentAdvice": parent_advice, "teacherAdvice": teacher_advice, "parentId": parent_id, "teacherId": teacher_id } try: grade_resp = requests.post("http://54.242.19.19:3000/api/grades/", json=grade_payload) advice_resp = requests.post("http://54.242.19.19:3000/api/advices/create/", json=advice_payload) print("→ Posted grade payload:", json.dumps(grade_payload, indent=2)) print("→ Grade API response:", grade_resp.status_code, grade_resp.text) print("→ Posted advice payload:", json.dumps(advice_payload, indent=2)) print("→ Advice API response:", advice_resp.status_code, advice_resp.text) except Exception as e: print("Error sending to external APIs:", e) return Response( json.dumps({"status": "ok", "message": "Grade and advice sent to external services."}), status=200, mimetype="application/json" ) if __name__ == '__main__': port = int(os.environ.get("PORT", 7860)) app.run(host="0.0.0.0", port=port, debug=False)