kevinpro commited on
Commit
31b8285
·
verified ·
1 Parent(s): 939f8b7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -20
app.py CHANGED
@@ -50,7 +50,7 @@ def split_string_into_max_six_chunks(input_str: str) -> list[str]:
50
  return []
51
 
52
  # Define the maximum number of chunks desired
53
- max_chunks = 6
54
 
55
  # If the number of lines is already within the limit, return the lines as they are
56
  if num_lines <= max_chunks:
@@ -84,10 +84,27 @@ print("Ednd dowload")
84
  # Loading the tokenizer once, because re-loading it takes about 1.5 seconds each time
85
  tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
86
 
87
-
88
  # Only assign GPU if cache not used
89
  @spaces.GPU
90
- def translate(input_question,input_cot):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
  all_judge = ""
92
  reasoning_chunk = split_string_into_max_six_chunks(input_cot)
93
  previsous_step_string = ""
@@ -96,23 +113,11 @@ def translate(input_question,input_cot):
96
  cur_step = "Step {}: ".format(index) + r
97
  input_string = template.format(input_question,previsous_step_string,cur_step)
98
  print(input_string)
99
- input_tokens = (
100
- tokenizer(input_string, return_tensors="pt")
101
- .input_ids[0]
102
- .cpu()
103
- .numpy()
104
- .tolist()
105
- )
106
- translated_chunk = model.generate(
107
- input_ids=torch.tensor([input_tokens]).to(device),
108
- max_length=len(input_tokens) + 2048,
109
- num_return_sequences=1,
110
- )
111
- full_output = tokenizer.decode(translated_chunk[0], skip_special_tokens=True)
112
- full_output = full_output.replace(input_string,"")
113
  previsous_step_string += "\n" + input_string
114
- all_judge += "Step {}: ".format(index) + full_output + "\n\n"
115
- print(full_output)
 
116
  return all_judge
117
 
118
 
@@ -137,7 +142,7 @@ with gr.Blocks() as demo:
137
  with gr.Row():
138
  output = gr.Textbox(label="Output Text", lines=6)
139
  btn.click(
140
- translate,
141
  inputs=[input_question,input_cot],
142
  outputs=output,
143
  )
 
50
  return []
51
 
52
  # Define the maximum number of chunks desired
53
+ max_chunks = 5
54
 
55
  # If the number of lines is already within the limit, return the lines as they are
56
  if num_lines <= max_chunks:
 
84
  # Loading the tokenizer once, because re-loading it takes about 1.5 seconds each time
85
  tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
86
 
87
+
88
  # Only assign GPU if cache not used
89
  @spaces.GPU
90
+ def working(input_text):
91
+ input_tokens = (
92
+ tokenizer(input_text, return_tensors="pt")
93
+ .input_ids[0]
94
+ .cpu()
95
+ .numpy()
96
+ .tolist()
97
+ )
98
+ translated_chunk = model.generate(
99
+ input_ids=torch.tensor([input_tokens]).to(device),
100
+ max_length=len(input_tokens) + 2048,
101
+ num_return_sequences=1,
102
+ )
103
+ full_output = tokenizer.decode(translated_chunk[0], skip_special_tokens=True)
104
+ full_output = full_output.replace(input_text,"")
105
+ return full_output
106
+
107
+ def Judge(input_question,input_cot):
108
  all_judge = ""
109
  reasoning_chunk = split_string_into_max_six_chunks(input_cot)
110
  previsous_step_string = ""
 
113
  cur_step = "Step {}: ".format(index) + r
114
  input_string = template.format(input_question,previsous_step_string,cur_step)
115
  print(input_string)
116
+ output = working(input_string)
 
 
 
 
 
 
 
 
 
 
 
 
 
117
  previsous_step_string += "\n" + input_string
118
+ all_judge += "Step {}: ".format(index) + output + "\n\n"
119
+ print(output)
120
+ print("============================\n\n")
121
  return all_judge
122
 
123
 
 
142
  with gr.Row():
143
  output = gr.Textbox(label="Output Text", lines=6)
144
  btn.click(
145
+ Judge,
146
  inputs=[input_question,input_cot],
147
  outputs=output,
148
  )