Spaces:
Runtime error
Runtime error
import sys, os | |
if sys.platform == "darwin": | |
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" | |
import logging | |
logging.getLogger("numba").setLevel(logging.WARNING) | |
logging.getLogger("markdown_it").setLevel(logging.WARNING) | |
logging.getLogger("urllib3").setLevel(logging.WARNING) | |
logging.getLogger("matplotlib").setLevel(logging.WARNING) | |
logging.basicConfig(level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s") | |
logger = logging.getLogger(__name__) | |
import torch | |
import argparse | |
import commons | |
import utils | |
from models import SynthesizerTrn | |
from text.symbols import symbols | |
from text import cleaned_text_to_sequence, get_bert | |
from text.cleaner import clean_text | |
import gradio as gr | |
import webbrowser | |
# ChatGLM2 | |
from transformers import AutoModel, AutoTokenizer, AutoConfig | |
import gradio as gr | |
import mdtex2html | |
import torch | |
import os | |
CHECKPOINT_PATH=f'output_lh_v2/checkpoint-700' | |
tokenizer = AutoTokenizer.from_pretrained("chatglm2-6b", trust_remote_code=True) | |
config = AutoConfig.from_pretrained("chatglm2-6b", trust_remote_code=True, pre_seq_len=128) | |
model = AutoModel.from_pretrained("chatglm2-6b", config=config, trust_remote_code=True) | |
prefix_state_dict = torch.load(os.path.join(CHECKPOINT_PATH, "pytorch_model.bin"), map_location=torch.device('cpu')) | |
#prefix_state_dict = torch.load(os.path.join(CHECKPOINT_PATH, "pytorch_model.bin")) | |
new_prefix_state_dict = {} | |
for k, v in prefix_state_dict.items(): | |
if k.startswith("transformer.prefix_encoder."): | |
new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v | |
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict) | |
#model = model.half().cuda() | |
model = model.float() | |
model.transformer.prefix_encoder.float() | |
model = model.eval() | |
"""Override Chatbot.postprocess""" | |
def postprocess(self, y): | |
if y is None: | |
return [] | |
for i, (message, response) in enumerate(y): | |
y[i] = ( | |
None if message is None else mdtex2html.convert((message)), | |
None if response is None else mdtex2html.convert(response), | |
) | |
return y | |
gr.Chatbot.postprocess = postprocess | |
def parse_text(text): | |
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/""" | |
lines = text.split("\n") | |
lines = [line for line in lines if line != ""] | |
count = 0 | |
for i, line in enumerate(lines): | |
if "```" in line: | |
count += 1 | |
items = line.split('`') | |
if count % 2 == 1: | |
lines[i] = f'<pre><code class="language-{items[-1]}">' | |
else: | |
lines[i] = f'<br></code></pre>' | |
else: | |
if i > 0: | |
if count % 2 == 1: | |
line = line.replace("`", "\`") | |
line = line.replace("<", "<") | |
line = line.replace(">", ">") | |
line = line.replace(" ", " ") | |
line = line.replace("*", "*") | |
line = line.replace("_", "_") | |
line = line.replace("-", "-") | |
line = line.replace(".", ".") | |
line = line.replace("!", "!") | |
line = line.replace("(", "(") | |
line = line.replace(")", ")") | |
line = line.replace("$", "$") | |
lines[i] = "<br>"+line | |
text = "".join(lines) | |
return text | |
def predict(input, chatbot, max_length, top_p, temperature, history, past_key_values): | |
chatbot.append((parse_text(input), "")) | |
for response, history, past_key_values in model.stream_chat(tokenizer, input, history, past_key_values=past_key_values, | |
return_past_key_values=True, | |
max_length=max_length, top_p=top_p, | |
temperature=temperature): | |
chatbot[-1] = (parse_text(input), parse_text(response)) | |
yield chatbot, history, past_key_values, response | |
def reset_user_input(): | |
return gr.update(value='') | |
def reset_state(): | |
return [], [], None | |
# Bert-VITS2 | |
net_g = None | |
def get_text(text, language_str, hps): | |
norm_text, phone, tone, word2ph = clean_text(text, language_str) | |
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) | |
if hps.data.add_blank: | |
phone = commons.intersperse(phone, 0) | |
tone = commons.intersperse(tone, 0) | |
language = commons.intersperse(language, 0) | |
for i in range(len(word2ph)): | |
word2ph[i] = word2ph[i] * 2 | |
word2ph[0] += 1 | |
bert = get_bert(norm_text, word2ph, language_str) | |
del word2ph | |
assert bert.shape[-1] == len(phone) | |
phone = torch.LongTensor(phone) | |
tone = torch.LongTensor(tone) | |
language = torch.LongTensor(language) | |
return bert, phone, tone, language | |
def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid): | |
global net_g | |
bert, phones, tones, lang_ids = get_text(text, "ZH", hps) | |
with torch.no_grad(): | |
x_tst=phones.to(device).unsqueeze(0) | |
tones=tones.to(device).unsqueeze(0) | |
lang_ids=lang_ids.to(device).unsqueeze(0) | |
bert = bert.to(device).unsqueeze(0) | |
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device) | |
del phones | |
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device) | |
audio = net_g.infer(x_tst, x_tst_lengths, speakers, tones, lang_ids, bert, sdp_ratio=sdp_ratio | |
, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0,0].data.cpu().float().numpy() | |
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers | |
return audio | |
def tts_fn(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale): | |
with torch.no_grad(): | |
audio = infer(text, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, sid=speaker) | |
return "Success", (hps.data.sampling_rate, audio) | |
image_markdown = (""" | |
<h1 align="center"><a href="http://www.talktalkai.com"><img src="https://media.9game.cn/gamebase/2021/7/23/227829877.jpg", alt="talktalkai" border="0" style="margin: 0 auto; height: 200px;" /></a> </h1> | |
""") | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--model_dir", default="./logs/OUTPUT_MODEL/G_13900.pth", help="path of your model") | |
parser.add_argument("--config_dir", default="./configs/config.json", help="path of your config file") | |
parser.add_argument("--share", default=False, help="make link public") | |
parser.add_argument("-d", "--debug", action="store_true", help="enable DEBUG-LEVEL log") | |
args = parser.parse_args() | |
if args.debug: | |
logger.info("Enable DEBUG-LEVEL log") | |
logging.basicConfig(level=logging.DEBUG) | |
hps = utils.get_hparams_from_file(args.config_dir) | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
''' | |
device = ( | |
"cuda:0" | |
if torch.cuda.is_available() | |
else ( | |
"mps" | |
if sys.platform == "darwin" and torch.backends.mps.is_available() | |
else "cpu" | |
) | |
) | |
''' | |
net_g = SynthesizerTrn( | |
len(symbols), | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
**hps.model).to(device) | |
_ = net_g.eval() | |
_ = utils.load_checkpoint(args.model_dir, net_g, None, skip_optimizer=True) | |
speaker_ids = hps.data.spk2id | |
speakers = list(speaker_ids.keys()) | |
with gr.Blocks() as app: | |
gr.Markdown("# <center>🌊💕🎶 ChatGLM2 神里绫华 + Bert-VITS2</center>") | |
gr.Markdown("## <center>🌟 - 和绫华 畅所欲言吧:稻妻神里流太刀术皆传,神里绫华,参上! </center>") | |
gr.Markdown("### <center>🍻 - 更多精彩应用,尽在[滔滔AI](http://www.talktalkai.com);滔滔AI,为爱滔滔!💕</center>") | |
with gr.Accordion("绫华", open=True): | |
gr.Markdown(image_markdown) | |
chatbot = gr.Chatbot() | |
with gr.Row(): | |
with gr.Column(scale=4): | |
with gr.Column(scale=12): | |
user_input = gr.Textbox(show_label=False, placeholder="推荐以“你好”来开始对话,效果会更好哦!和绫华一起叙叙旧吧...", lines=2).style( | |
container=False) | |
with gr.Column(min_width=32, scale=1): | |
submitBtn = gr.Button("开始对话吧!", variant="primary") | |
with gr.Column(scale=1): | |
emptyBtn = gr.Button("清空所有聊天记录") | |
max_length = gr.Slider(0, 32768, value=8192, step=1.0, label="Maximum length", interactive=True, visible=False) | |
top_p = gr.Slider(0, 1, value=0.8, step=0.01, label="Top P", interactive=True, visible=False) | |
temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="数值越高,文本的随机性越强", interactive=True) | |
response_lh = gr.Textbox(label="神里绫华的回答", visible=False) | |
history = gr.State([]) | |
past_key_values = gr.State(None) | |
submitBtn.click(predict, [user_input, chatbot, max_length, top_p, temperature, history, past_key_values], | |
[chatbot, history, past_key_values, response_lh], show_progress=True) | |
submitBtn.click(reset_user_input, [], [user_input]) | |
emptyBtn.click(reset_state, outputs=[chatbot, history, past_key_values], show_progress=True) | |
with gr.Row(): | |
with gr.Column(): | |
text = response_lh | |
speaker = gr.Dropdown(choices=speakers, value=speakers[0], label='Speaker', visible=False) | |
with gr.Row(): | |
sdp_ratio = gr.Slider(minimum=0, maximum=1, value=0.2, step=0.1, label='语调变化', visible=False) | |
noise_scale = gr.Slider(minimum=0.1, maximum=1.5, value=0.6, step=0.1, label='感情变化', visible=False) | |
with gr.Row(): | |
noise_scale_w = gr.Slider(minimum=0.1, maximum=1.4, value=0.8, step=0.1, label='音节发音长度变化') | |
length_scale = gr.Slider(minimum=0.1, maximum=2, value=1, step=0.1, label='语速 (数值越小,语速越快)') | |
btn = gr.Button("开启AI语音之旅吧!", variant="primary") | |
with gr.Column(): | |
text_output = gr.Textbox(label="Message", visible=False) | |
audio_output = gr.Audio(label="神里绫华发来的语音", autoplay=True) | |
btn.click(tts_fn, | |
inputs=[text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale], | |
outputs=[text_output, audio_output]) | |
app.launch(show_error=True) | |