File size: 7,565 Bytes
9f6cbde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# -*- coding: utf-8 -*-
"""
@author:XuMing(xuming624@qq.com)
@description:
modified from https://github.com/imClumsyPanda/langchain-ChatGLM/blob/master/webui.py
"""
import gradio as gr
import os
import shutil
from loguru import logger
from chatpdf import ChatPDF

pwd_path = os.path.abspath(os.path.dirname(__file__))

CONTENT_DIR = os.path.join(pwd_path, "content")
logger.info(f"CONTENT_DIR: {CONTENT_DIR}")
VECTOR_SEARCH_TOP_K = 3
MAX_INPUT_LEN = 512

embedding_model_dict = {
    "sentence-transformers": "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
    "ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
    "ernie-base": "nghuyong/ernie-3.0-base-zh",
    "text2vec": "shibing624/text2vec-base-chinese",
}

# supported LLM models
llm_model_dict = {
    "chatglm-6b-int4": "THUDM/chatglm-6b-int4",
    "chatglm-6b-int4-qe": "THUDM/chatglm-6b-int4-qe",
    "chatglm-6b": "THUDM/chatglm-6b",
    "llama-7b": "decapoda-research/llama-7b-hf",
    "llama-13b": "decapoda-research/llama-13b-hf",
}

llm_model_dict_list = list(llm_model_dict.keys())
embedding_model_dict_list = list(embedding_model_dict.keys())

model = ChatPDF(
    sim_model_name_or_path="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
    gen_model_type="chatglm",
    gen_model_name_or_path="THUDM/chatglm-6b-int4",
    lora_model_name_or_path=None,
    max_input_size=MAX_INPUT_LEN,
)


def get_file_list():
    if not os.path.exists("content"):
        return []
    return [f for f in os.listdir("content") if
            f.endswith(".txt") or f.endswith(".pdf") or f.endswith(".docx") or f.endswith(".md")]


file_list = get_file_list()


def upload_file(file):
    if not os.path.exists(CONTENT_DIR):
        os.mkdir(CONTENT_DIR)
    filename = os.path.basename(file.name)
    shutil.move(file.name, os.path.join(CONTENT_DIR, filename))
    # file_list首位插入新上传的文件
    file_list.insert(0, filename)
    return gr.Dropdown.update(choices=file_list, value=filename)


def get_answer(query, index_path, history):
    if index_path:
        if not model.sim_model.corpus_embeddings:
            model.load_index(index_path)
        response, empty_history = model.query(query, topn=VECTOR_SEARCH_TOP_K)
        history = history + [[query, response]]
    else:
        # history = history + [[None, "请先加载文件后,再进行提问。"]]
        # 未加载文件,仅返回生成模型结果
        response, empty_history = model.gen_model.chat(query)
        history = history + [[query, response]]
    logger.debug(f"query: {query}, response: {response}")
    return history, ""


def update_status(history, status):
    history = history + [[None, status]]
    logger.info(status)
    return history


def reinit_model(llm_model, embedding_model, history):
    try:
        global model
        del model
        model = ChatPDF(
            sim_model_name_or_path=embedding_model_dict.get(
                embedding_model,
                "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"),
            gen_model_type=llm_model.split('-')[0],
            gen_model_name_or_path=llm_model_dict.get(llm_model, "THUDM/chatglm-6b-int4"),
            lora_model_name_or_path=None,
            max_input_size=MAX_INPUT_LEN,
        )
        model_status = """模型已成功重新加载,请选择文件后点击"加载文件"按钮"""
    except Exception as e:
        model = None
        logger.error(e)
        model_status = """模型未成功重新加载,请重新选择后点击"加载模型"按钮"""
    return history + [[None, model_status]]


def get_vector_store(filepath, history):
    logger.info(filepath, history)
    index_path = None
    file_status = ''
    if model is not None:
        local_file_path = os.path.join(CONTENT_DIR, filepath)
        local_index_path = os.path.join(CONTENT_DIR, filepath + ".index.json")
        if os.path.exists(local_file_path):
            model.load_pdf_file(local_file_path)
            model.save_index(local_index_path)
            index_path = local_index_path
            if index_path:
                file_status = "文件已成功加载,请开始提问"
            else:
                file_status = "文件未成功加载,请重新上传文件"
    else:
        file_status = "模型未完成加载,请先在加载模型后再导入文件"

    return index_path, history + [[None, file_status]]


def reset_chat(chatbot, state):
    return None, None


block_css = """.importantButton {
    background: linear-gradient(45deg, #7e0570,#5d1c99, #6e00ff) !important;
    border: none !important;
}
.importantButton:hover {
    background: linear-gradient(45deg, #ff00e0,#8500ff, #6e00ff) !important;
    border: none !important;
}"""

webui_title = """
# 🎉ChatPDF WebUI🎉
Link in: [https://github.com/shibing624/ChatPDF](https://github.com/shibing624/ChatPDF)  PS: 2核CPU 16G内存机器,约2min一条😭
"""

init_message = """欢迎使用 ChatPDF Web UI,可以直接提问或上传文件后提问 """

with gr.Blocks(css=block_css) as demo:
    index_path, file_status, model_status = gr.State(""), gr.State(""), gr.State("")
    gr.Markdown(webui_title)
    with gr.Row():
        with gr.Column(scale=2):
            chatbot = gr.Chatbot([[None, init_message], [None, None]],
                                 elem_id="chat-box",
                                 show_label=False).style(height=700)
            query = gr.Textbox(show_label=False,
                               placeholder="请输入提问内容,按回车进行提交",
                               ).style(container=False)
            clear_btn = gr.Button('🔄Clear!', elem_id='clear').style(full_width=True)
        with gr.Column(scale=1):
            llm_model = gr.Radio(llm_model_dict_list,
                                 label="LLM 模型",
                                 value=list(llm_model_dict.keys())[0],
                                 interactive=True)
            embedding_model = gr.Radio(embedding_model_dict_list,
                                       label="Embedding 模型",
                                       value=embedding_model_dict_list[0],
                                       interactive=True)
            load_model_button = gr.Button("重新加载模型")

            with gr.Tab("select"):
                selectFile = gr.Dropdown(
                    file_list,
                    label="content file",
                    interactive=True,
                    value=file_list[0] if len(file_list) > 0 else None
                )
            with gr.Tab("upload"):
                file = gr.File(
                    label="content file",
                    file_types=['.txt', '.md', '.docx', '.pdf']
                )
            load_file_button = gr.Button("加载文件")
    load_model_button.click(
        reinit_model,
        show_progress=True,
        inputs=[llm_model, embedding_model, chatbot],
        outputs=chatbot
    )
    # 将上传的文件保存到content文件夹下,并更新下拉框
    file.upload(upload_file, inputs=file, outputs=selectFile)
    load_file_button.click(
        get_vector_store,
        show_progress=True,
        inputs=[selectFile, chatbot],
        outputs=[index_path, chatbot],
    )
    query.submit(
        get_answer,
        [query, index_path, chatbot],
        [chatbot, query],
    )
    clear_btn.click(reset_chat, [chatbot, query], [chatbot, query])

demo.queue(concurrency_count=3).launch(
    server_name='0.0.0.0', share=False, inbrowser=False
)