Spaces:
Paused
Paused
File size: 7,565 Bytes
9f6cbde |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
# -*- coding: utf-8 -*-
"""
@author:XuMing(xuming624@qq.com)
@description:
modified from https://github.com/imClumsyPanda/langchain-ChatGLM/blob/master/webui.py
"""
import gradio as gr
import os
import shutil
from loguru import logger
from chatpdf import ChatPDF
pwd_path = os.path.abspath(os.path.dirname(__file__))
CONTENT_DIR = os.path.join(pwd_path, "content")
logger.info(f"CONTENT_DIR: {CONTENT_DIR}")
VECTOR_SEARCH_TOP_K = 3
MAX_INPUT_LEN = 512
embedding_model_dict = {
"sentence-transformers": "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
"ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
"ernie-base": "nghuyong/ernie-3.0-base-zh",
"text2vec": "shibing624/text2vec-base-chinese",
}
# supported LLM models
llm_model_dict = {
"chatglm-6b-int4": "THUDM/chatglm-6b-int4",
"chatglm-6b-int4-qe": "THUDM/chatglm-6b-int4-qe",
"chatglm-6b": "THUDM/chatglm-6b",
"llama-7b": "decapoda-research/llama-7b-hf",
"llama-13b": "decapoda-research/llama-13b-hf",
}
llm_model_dict_list = list(llm_model_dict.keys())
embedding_model_dict_list = list(embedding_model_dict.keys())
model = ChatPDF(
sim_model_name_or_path="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
gen_model_type="chatglm",
gen_model_name_or_path="THUDM/chatglm-6b-int4",
lora_model_name_or_path=None,
max_input_size=MAX_INPUT_LEN,
)
def get_file_list():
if not os.path.exists("content"):
return []
return [f for f in os.listdir("content") if
f.endswith(".txt") or f.endswith(".pdf") or f.endswith(".docx") or f.endswith(".md")]
file_list = get_file_list()
def upload_file(file):
if not os.path.exists(CONTENT_DIR):
os.mkdir(CONTENT_DIR)
filename = os.path.basename(file.name)
shutil.move(file.name, os.path.join(CONTENT_DIR, filename))
# file_list首位插入新上传的文件
file_list.insert(0, filename)
return gr.Dropdown.update(choices=file_list, value=filename)
def get_answer(query, index_path, history):
if index_path:
if not model.sim_model.corpus_embeddings:
model.load_index(index_path)
response, empty_history = model.query(query, topn=VECTOR_SEARCH_TOP_K)
history = history + [[query, response]]
else:
# history = history + [[None, "请先加载文件后,再进行提问。"]]
# 未加载文件,仅返回生成模型结果
response, empty_history = model.gen_model.chat(query)
history = history + [[query, response]]
logger.debug(f"query: {query}, response: {response}")
return history, ""
def update_status(history, status):
history = history + [[None, status]]
logger.info(status)
return history
def reinit_model(llm_model, embedding_model, history):
try:
global model
del model
model = ChatPDF(
sim_model_name_or_path=embedding_model_dict.get(
embedding_model,
"sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"),
gen_model_type=llm_model.split('-')[0],
gen_model_name_or_path=llm_model_dict.get(llm_model, "THUDM/chatglm-6b-int4"),
lora_model_name_or_path=None,
max_input_size=MAX_INPUT_LEN,
)
model_status = """模型已成功重新加载,请选择文件后点击"加载文件"按钮"""
except Exception as e:
model = None
logger.error(e)
model_status = """模型未成功重新加载,请重新选择后点击"加载模型"按钮"""
return history + [[None, model_status]]
def get_vector_store(filepath, history):
logger.info(filepath, history)
index_path = None
file_status = ''
if model is not None:
local_file_path = os.path.join(CONTENT_DIR, filepath)
local_index_path = os.path.join(CONTENT_DIR, filepath + ".index.json")
if os.path.exists(local_file_path):
model.load_pdf_file(local_file_path)
model.save_index(local_index_path)
index_path = local_index_path
if index_path:
file_status = "文件已成功加载,请开始提问"
else:
file_status = "文件未成功加载,请重新上传文件"
else:
file_status = "模型未完成加载,请先在加载模型后再导入文件"
return index_path, history + [[None, file_status]]
def reset_chat(chatbot, state):
return None, None
block_css = """.importantButton {
background: linear-gradient(45deg, #7e0570,#5d1c99, #6e00ff) !important;
border: none !important;
}
.importantButton:hover {
background: linear-gradient(45deg, #ff00e0,#8500ff, #6e00ff) !important;
border: none !important;
}"""
webui_title = """
# 🎉ChatPDF WebUI🎉
Link in: [https://github.com/shibing624/ChatPDF](https://github.com/shibing624/ChatPDF) PS: 2核CPU 16G内存机器,约2min一条😭
"""
init_message = """欢迎使用 ChatPDF Web UI,可以直接提问或上传文件后提问 """
with gr.Blocks(css=block_css) as demo:
index_path, file_status, model_status = gr.State(""), gr.State(""), gr.State("")
gr.Markdown(webui_title)
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot([[None, init_message], [None, None]],
elem_id="chat-box",
show_label=False).style(height=700)
query = gr.Textbox(show_label=False,
placeholder="请输入提问内容,按回车进行提交",
).style(container=False)
clear_btn = gr.Button('🔄Clear!', elem_id='clear').style(full_width=True)
with gr.Column(scale=1):
llm_model = gr.Radio(llm_model_dict_list,
label="LLM 模型",
value=list(llm_model_dict.keys())[0],
interactive=True)
embedding_model = gr.Radio(embedding_model_dict_list,
label="Embedding 模型",
value=embedding_model_dict_list[0],
interactive=True)
load_model_button = gr.Button("重新加载模型")
with gr.Tab("select"):
selectFile = gr.Dropdown(
file_list,
label="content file",
interactive=True,
value=file_list[0] if len(file_list) > 0 else None
)
with gr.Tab("upload"):
file = gr.File(
label="content file",
file_types=['.txt', '.md', '.docx', '.pdf']
)
load_file_button = gr.Button("加载文件")
load_model_button.click(
reinit_model,
show_progress=True,
inputs=[llm_model, embedding_model, chatbot],
outputs=chatbot
)
# 将上传的文件保存到content文件夹下,并更新下拉框
file.upload(upload_file, inputs=file, outputs=selectFile)
load_file_button.click(
get_vector_store,
show_progress=True,
inputs=[selectFile, chatbot],
outputs=[index_path, chatbot],
)
query.submit(
get_answer,
[query, index_path, chatbot],
[chatbot, query],
)
clear_btn.click(reset_chat, [chatbot, query], [chatbot, query])
demo.queue(concurrency_count=3).launch(
server_name='0.0.0.0', share=False, inbrowser=False
)
|