File size: 7,461 Bytes
1b6bcbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import argparse
import os
import re
import subprocess

import librosa
import numpy as np
import soundfile

from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks


def get_sub_dirs(source_dir):
    sub_dir = [f for f in os.listdir(source_dir) if not f.startswith('.')]
    sub_dir = [f for f in sub_dir if os.path.isdir(os.path.join(source_dir, f))]
    return sub_dir


def is_sentence_ending(sentence):
    if re.search(r'[。?!……]$', sentence):
        return True
    return False


def resample_audios(origin_dir, resample_dir, sample_rate):
    print("start resample audios")
    os.makedirs(resample_dir, exist_ok=True)
    dirs = get_sub_dirs(origin_dir)

    try:
        subprocess.run(["ffmpeg", "-version"], capture_output=True, check=True)
        ffmpeg_installed = True
        print("ffmpeg installed. use ffmpeg.")
    except Exception as e:
        ffmpeg_installed = False
        print("ERROR! ffmpeg is not installed. use librosa.")

    for dir in dirs:
        source_dir = os.path.join(origin_dir, dir)
        target_dir = os.path.join(resample_dir, dir)
        os.makedirs(target_dir, exist_ok=True)
        listdir = list(os.listdir(source_dir))
        listdir_len = len(listdir)
        for index, f in enumerate(listdir, start=1):
            if f.endswith(".wav") or f.endswith(".mp3"):
                file_path = os.path.join(source_dir, f)
                target_path = os.path.join(target_dir, f)
                target_path = os.path.splitext(target_path)[0] + '.wav'
                if os.path.exists(target_path):
                    continue
                if ffmpeg_installed:
                    process = subprocess.run(["ffmpeg", "-y", "-i", file_path, "-ar", f"{sample_rate}", "-ac", "1", "-v", "quiet", target_path])
                else:
                    try:
                        print(f"{index}/{listdir_len} file")
                        data, sample_rate = librosa.load(file_path, sr=sample_rate, mono=True)
                        soundfile.write(target_path, data, sample_rate)
                    except Exception as e:
                        print(f"\n{file_path} convert fail.")
                    finally:
                        pass
                    


def create_dataset(source_dir, target_dir, sample_rate, language, inference_pipeline, max_seconds):
    # source_dir, target_dir, sample_rate=44100, language = "ZH", inference_pipeline = None
    
    roles = get_sub_dirs(source_dir)
    count = 0
    result = []

    for speaker_name in roles:

        source_audios = [f for f in os.listdir(os.path.join(source_dir, speaker_name)) if f.endswith(".wav")]
        source_audios = [os.path.join(source_dir, speaker_name, filename) for filename in source_audios]
        slice_dir = os.path.join(target_dir, speaker_name)
        os.makedirs(slice_dir, exist_ok=True)

        for audio_path in source_audios:
            rec_result = inference_pipeline(audio_in=audio_path) # dict_keys(['text', 'text_postprocessed', 'time_stamp', 'sentences'])
            data, sample_rate = librosa.load(audio_path, sr=sample_rate, mono=True)

            sentence_list = []
            audio_list = []
            time_length = 0
            for sentence in rec_result['sentences']:
                text = sentence['text'].strip()
                if (text == ""):
                    continue
                start = int((sentence['start'] / 1000) * sample_rate)
                end = int((sentence['end'] / 1000) * sample_rate)

                if time_length > 0 and time_length + ((sentence['end'] - sentence['start']) / 1000) > max_seconds:
                    sliced_audio_name = f"{str(count).zfill(6)}"
                    sliced_audio_path = os.path.join(slice_dir, sliced_audio_name+".wav")
                    s_sentence = "".join(sentence_list)
                    if not re.search(r"[。!?]$", s_sentence):
                        sentence_end = s_sentence[-1]
                        s_sentence = s_sentence[:-1] + '。' if sentence_end != '。' else s_sentence
                    audio_concat = np.concatenate(audio_list)
                    if time_length > max_seconds:
                        print(f"[too long voice]:{sliced_audio_path}, voice_length:{time_length} seconds")
                    soundfile.write(sliced_audio_path, audio_concat, sample_rate)
                    result.append(
                        f"{sliced_audio_path}|{speaker_name}|{language}|{s_sentence}"
                    )
                    sentence_list = []
                    audio_list = []
                    time_length = 0
                    count = count + 1

                sentence_list.append(text)
                audio_list.append(data[start:end])
                time_length = time_length + ((sentence['end'] - sentence['start']) / 1000)
                
                if ( is_sentence_ending(text) ):
                    sliced_audio_name = f"{str(count).zfill(6)}"
                    sliced_audio_path = os.path.join(slice_dir, sliced_audio_name+".wav")
                    s_sentence = "".join(sentence_list)
                    audio_concat = np.concatenate(audio_list)
                    soundfile.write(sliced_audio_path, audio_concat, sample_rate)
                    
                    result.append(
                        f"{sliced_audio_path}|{speaker_name}|{language}|{s_sentence}"
                    )
                    sentence_list = []
                    audio_list = []
                    time_length = 0
                    count = count + 1

    return result


def create_list(source_dir, target_dir, resample_dir, sample_rate, language, output_list, max_seconds):

    resample_audios(source_dir, resample_dir, sample_rate)
    
    inference_pipeline = pipeline(
        task=Tasks.auto_speech_recognition,
        model='damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch',
        model_revision="v1.2.4")

    result =  create_dataset(resample_dir, target_dir, sample_rate = sample_rate, language = language, inference_pipeline = inference_pipeline, max_seconds = max_seconds)

    with open(output_list, "w", encoding="utf-8") as file:
        for line in result:
            try:
                file.write(line.strip() + '\n')
            except UnicodeEncodeError:
                print("UnicodeEncodeError: Can't encode to ASCII:", line)


if __name__ == "__main__":
    
    parser = argparse.ArgumentParser()

    parser.add_argument("--source_dir", type=str, default="origin", help="Source directory path, Default: origin")
    parser.add_argument("--target_dir", type=str, default="dataset", help="Target directory path, Default: dataset")
    parser.add_argument("--resample_dir", type=str, default="origin_resample", help="Resample directory path, Default: origin_resample")
    parser.add_argument("--sample_rate", type=int, default=44100, help="Sample rate, Default: 44100")
    parser.add_argument("--language", type=str, default="ZH", help="Language, Default: ZH")
    parser.add_argument("--output", type=str, default="demo.list", help="List file, Default: demo.list")
    parser.add_argument("--max_seconds", type=int, default=15, help="Max sliced voice length(seconds), Default: 15")

    args = parser.parse_args()

    create_list(args.source_dir, args.target_dir, args.resample_dir, args.sample_rate, args.language, args.output, args.max_seconds)