Spaces:
No application file
No application file
File size: 958 Bytes
1b6bcbc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
# -*- coding:utf-8 -*-
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
import sys,os,traceback
dir=sys.argv[1]
# opt_name=dir.split("\\")[-1].split("/")[-1]
opt_name=os.path.basename(dir)
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model='tools/damo_asr/models/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch',
vad_model='tools/damo_asr/models/speech_fsmn_vad_zh-cn-16k-common-pytorch',
punc_model='tools/damo_asr/models/punc_ct-transformer_zh-cn-common-vocab272727-pytorch',
)
opt=[]
for name in os.listdir(dir):
try:
text = inference_pipeline(audio_in="%s/%s"%(dir,name))["text"]
opt.append("%s/%s|%s|ZH|%s"%(dir,name,opt_name,text))
except:
print(traceback.format_exc())
opt_dir="output/asr_opt"
os.makedirs(opt_dir,exist_ok=True)
with open("%s/%s.list"%(opt_dir,opt_name),"w",encoding="utf-8")as f:f.write("\n".join(opt))
|