Spaces:
No application file
No application file
import os | |
gpt_path=os.environ.get("gpt_path","pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt") | |
sovits_path=os.environ.get("sovits_path","pretrained_models/s2G488k.pth") | |
cnhubert_base_path=os.environ.get("cnhubert_base_path","pretrained_models/chinese-hubert-base") | |
bert_path=os.environ.get("bert_path","pretrained_models/chinese-roberta-wwm-ext-large") | |
if("_CUDA_VISIBLE_DEVICES"in os.environ): | |
os.environ["CUDA_VISIBLE_DEVICES"]=os.environ["_CUDA_VISIBLE_DEVICES"] | |
is_half=eval(os.environ.get("is_half","True")) | |
import gradio as gr | |
from transformers import AutoModelForMaskedLM, AutoTokenizer | |
import sys,torch,numpy as np | |
from pathlib import Path | |
import os,pdb,utils,librosa,math,traceback,requests,argparse,torch,multiprocessing,pandas as pd,torch.multiprocessing as mp,soundfile | |
# torch.backends.cuda.sdp_kernel("flash") | |
# torch.backends.cuda.enable_flash_sdp(True) | |
# torch.backends.cuda.enable_mem_efficient_sdp(True) # Not avaliable if torch version is lower than 2.0 | |
# torch.backends.cuda.enable_math_sdp(True) | |
from random import shuffle | |
from AR.utils import get_newest_ckpt | |
from glob import glob | |
from tqdm import tqdm | |
from feature_extractor import cnhubert | |
cnhubert.cnhubert_base_path=cnhubert_base_path | |
from io import BytesIO | |
from module.models import SynthesizerTrn | |
from AR.models.t2s_lightning_module import Text2SemanticLightningModule | |
from AR.utils.io import load_yaml_config | |
from text import cleaned_text_to_sequence | |
from text.cleaner import text_to_sequence, clean_text | |
from time import time as ttime | |
from module.mel_processing import spectrogram_torch | |
from my_utils import load_audio | |
device="cuda" | |
tokenizer = AutoTokenizer.from_pretrained(bert_path) | |
bert_model=AutoModelForMaskedLM.from_pretrained(bert_path) | |
if(is_half==True):bert_model=bert_model.half().to(device) | |
else:bert_model=bert_model.to(device) | |
# bert_model=bert_model.to(device) | |
def get_bert_feature(text, word2ph): | |
with torch.no_grad(): | |
inputs = tokenizer(text, return_tensors="pt") | |
for i in inputs: | |
inputs[i] = inputs[i].to(device)#####输入是long不用管精度问题,精度随bert_model | |
res = bert_model(**inputs, output_hidden_states=True) | |
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] | |
assert len(word2ph) == len(text) | |
phone_level_feature = [] | |
for i in range(len(word2ph)): | |
repeat_feature = res[i].repeat(word2ph[i], 1) | |
phone_level_feature.append(repeat_feature) | |
phone_level_feature = torch.cat(phone_level_feature, dim=0) | |
# if(is_half==True):phone_level_feature=phone_level_feature.half() | |
return phone_level_feature.T | |
n_semantic = 1024 | |
dict_s2=torch.load(sovits_path,map_location="cpu") | |
hps=dict_s2["config"] | |
class DictToAttrRecursive: | |
def __init__(self, input_dict): | |
for key, value in input_dict.items(): | |
if isinstance(value, dict): | |
# 如果值是字典,递归调用构造函数 | |
setattr(self, key, DictToAttrRecursive(value)) | |
else: | |
setattr(self, key, value) | |
hps = DictToAttrRecursive(hps) | |
hps.model.semantic_frame_rate="25hz" | |
dict_s1=torch.load(gpt_path,map_location="cpu") | |
config=dict_s1["config"] | |
ssl_model=cnhubert.get_model() | |
if(is_half==True):ssl_model=ssl_model.half().to(device) | |
else:ssl_model=ssl_model.to(device) | |
vq_model = SynthesizerTrn( | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
**hps.model) | |
if(is_half==True):vq_model=vq_model.half().to(device) | |
else:vq_model=vq_model.to(device) | |
vq_model.eval() | |
print(vq_model.load_state_dict(dict_s2["weight"],strict=False)) | |
hz = 50 | |
max_sec = config['data']['max_sec'] | |
# t2s_model = Text2SemanticLightningModule.load_from_checkpoint(checkpoint_path=gpt_path, config=config, map_location="cpu")#########todo | |
t2s_model = Text2SemanticLightningModule(config,"ojbk",is_train=False) | |
t2s_model.load_state_dict(dict_s1["weight"]) | |
if(is_half==True):t2s_model=t2s_model.half() | |
t2s_model=t2s_model.to(device) | |
t2s_model.eval() | |
total = sum([param.nelement() for param in t2s_model.parameters()]) | |
print("Number of parameter: %.2fM" % (total / 1e6)) | |
def get_spepc(hps, filename): | |
audio=load_audio(filename,int(hps.data.sampling_rate)) | |
audio=torch.FloatTensor(audio) | |
audio_norm = audio | |
audio_norm = audio_norm.unsqueeze(0) | |
spec = spectrogram_torch(audio_norm, hps.data.filter_length,hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,center=False) | |
return spec | |
dict_language={ | |
"中文":"zh", | |
"英文":"en", | |
"日文":"ja" | |
} | |
def get_tts_wav(ref_wav_path,prompt_text,prompt_language,text,text_language): | |
t0 = ttime() | |
prompt_text=prompt_text.strip("\n") | |
prompt_language,text=prompt_language,text.strip("\n") | |
with torch.no_grad(): | |
wav16k, sr = librosa.load(ref_wav_path, sr=16000) # 派蒙 | |
wav16k = torch.from_numpy(wav16k) | |
if(is_half==True):wav16k=wav16k.half().to(device) | |
else:wav16k=wav16k.to(device) | |
ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2)#.float() | |
codes = vq_model.extract_latent(ssl_content) | |
prompt_semantic = codes[0, 0] | |
t1 = ttime() | |
prompt_language=dict_language[prompt_language] | |
text_language=dict_language[text_language] | |
phones1, word2ph1, norm_text1 = clean_text(prompt_text, prompt_language) | |
phones1=cleaned_text_to_sequence(phones1) | |
texts=text.split("\n") | |
audio_opt = [] | |
zero_wav=np.zeros(int(hps.data.sampling_rate*0.3),dtype=np.float16 if is_half==True else np.float32) | |
for text in texts: | |
phones2, word2ph2, norm_text2 = clean_text(text, text_language) | |
phones2 = cleaned_text_to_sequence(phones2) | |
if(prompt_language=="zh"):bert1 = get_bert_feature(norm_text1, word2ph1) | |
else:bert1 = torch.zeros((1024, len(phones1)),dtype=torch.float16 if is_half==True else torch.float32).to(device) | |
if(text_language=="zh"):bert2 = get_bert_feature(norm_text2, word2ph2) | |
else:bert2 = torch.zeros((1024, len(phones2))).to(bert1) | |
bert = torch.cat([bert1, bert2], 1) | |
all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0) | |
bert = bert.to(device).unsqueeze(0) | |
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device) | |
prompt = prompt_semantic.unsqueeze(0).to(device) | |
t2 = ttime() | |
with torch.no_grad(): | |
# pred_semantic = t2s_model.model.infer( | |
pred_semantic,idx = t2s_model.model.infer_panel( | |
all_phoneme_ids, | |
all_phoneme_len, | |
prompt, | |
bert, | |
# prompt_phone_len=ph_offset, | |
top_k=config['inference']['top_k'], | |
early_stop_num=hz * max_sec) | |
t3 = ttime() | |
# print(pred_semantic.shape,idx) | |
pred_semantic = pred_semantic[:,-idx:].unsqueeze(0) # .unsqueeze(0)#mq要多unsqueeze一次 | |
refer = get_spepc(hps, ref_wav_path)#.to(device) | |
if(is_half==True):refer=refer.half().to(device) | |
else:refer=refer.to(device) | |
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0] | |
audio = vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer).detach().cpu().numpy()[0, 0]###试试重建不带上prompt部分 | |
audio_opt.append(audio) | |
audio_opt.append(zero_wav) | |
t4 = ttime() | |
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3)) | |
yield hps.data.sampling_rate,(np.concatenate(audio_opt,0)*32768).astype(np.int16) | |
splits={",","。","?","!",",",".","?","!","~",":",":","—","…",}#不考虑省略号 | |
def split(todo_text): | |
todo_text = todo_text.replace("……", "。").replace("——", ",") | |
if (todo_text[-1] not in splits): todo_text += "。" | |
i_split_head = i_split_tail = 0 | |
len_text = len(todo_text) | |
todo_texts = [] | |
while (1): | |
if (i_split_head >= len_text): break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入 | |
if (todo_text[i_split_head] in splits): | |
i_split_head += 1 | |
todo_texts.append(todo_text[i_split_tail:i_split_head]) | |
i_split_tail = i_split_head | |
else: | |
i_split_head += 1 | |
return todo_texts | |
def cut1(inp): | |
inp=inp.strip("\n") | |
inps=split(inp) | |
split_idx=list(range(0,len(inps),5)) | |
split_idx[-1]=None | |
if(len(split_idx)>1): | |
opts=[] | |
for idx in range(len(split_idx)-1): | |
opts.append("".join(inps[split_idx[idx]:split_idx[idx+1]])) | |
else: | |
opts=[inp] | |
return "\n".join(opts) | |
def cut2(inp): | |
inp=inp.strip("\n") | |
inps=split(inp) | |
if(len(inps)<2):return [inp] | |
opts=[] | |
summ=0 | |
tmp_str="" | |
for i in range(len(inps)): | |
summ+=len(inps[i]) | |
tmp_str+=inps[i] | |
if(summ>50): | |
summ=0 | |
opts.append(tmp_str) | |
tmp_str="" | |
if(tmp_str!=""):opts.append(tmp_str) | |
if(len(opts[-1])<50):##如果最后一个太短了,和前一个合一起 | |
opts[-2]=opts[-2]+opts[-1] | |
opts=opts[:-1] | |
return "\n".join(opts) | |
def cut3(inp): | |
inp=inp.strip("\n") | |
return "\n".join(["%s。"%item for item in inp.strip("。").split("。")]) | |
with gr.Blocks(title="GPT-SoVITS WebUI") as app: | |
gr.Markdown( | |
value= | |
"本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>." | |
) | |
# with gr.Tabs(): | |
# with gr.TabItem(i18n("伴奏人声分离&去混响&去回声")): | |
with gr.Group(): | |
gr.Markdown( | |
value= | |
"*请上传并填写参考信息" | |
) | |
with gr.Row(): | |
inp_ref = gr.Audio(label="请上传参考音频", type="filepath") | |
prompt_text= gr.Textbox(label="参考音频的文本",value="") | |
prompt_language= gr.Dropdown(label="参考音频的语种",choices=["中文","英文","日文"]) | |
gr.Markdown( | |
value= | |
"*请填写需要合成的目标文本" | |
) | |
with gr.Row(): | |
text=gr.Textbox(label="需要合成的文本",value="") | |
text_language = gr.Dropdown(label="需要合成的语种", choices=["中文", "英文", "日文"]) | |
inference_button=gr.Button("合成语音", variant="primary") | |
output = gr.Audio(label="输出的语音") | |
inference_button.click(get_tts_wav, [inp_ref, prompt_text,prompt_language, text,text_language], [output]) | |
gr.Markdown( | |
value= | |
"文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。" | |
) | |
with gr.Row(): | |
text_inp=gr.Textbox(label="需要合成的切分前文本",value="") | |
button1 = gr.Button("凑五句一切", variant="primary") | |
button2 = gr.Button("凑50字一切", variant="primary") | |
button3 = gr.Button("按中文句号。切", variant="primary") | |
text_opt = gr.Textbox(label="切分后文本", value="") | |
button1.click(cut1,[text_inp],[text_opt]) | |
button2.click(cut2,[text_inp],[text_opt]) | |
button3.click(cut3,[text_inp],[text_opt]) | |
gr.Markdown( | |
value= | |
"后续将支持混合语种编码文本输入。" | |
) | |
app.queue(concurrency_count=511, max_size=1022).launch( | |
server_name="0.0.0.0", | |
inbrowser=True, | |
server_port=6006, | |
quiet=True, | |
) |