kevinwang676's picture
Upload folder using huggingface_hub
1b6bcbc verified
import argparse
import os
import re
import subprocess
import librosa
import numpy as np
import soundfile
from subfix.models.audio.asr import Openai_Whisper
from subfix.utils import convert_files
from subfix.utils.misc import merge_audio_slice, get_sub_dirs
def create_whisper_dataset(source_dir, target_dir, sample_rate, language, infer_model, max_seconds):
# source_dir, target_dir, sample_rate=44100, language = "ZH", inference_pipeline = None
roles = get_sub_dirs(source_dir)
count = 0
result = []
for speaker_name in roles:
source_audios = [f for f in os.listdir(os.path.join(source_dir, speaker_name)) if f.endswith(".wav")]
source_audios = [os.path.join(source_dir, speaker_name, filename) for filename in source_audios]
slice_dir = os.path.join(target_dir, speaker_name)
os.makedirs(slice_dir, exist_ok=True)
for audio_path in sorted(source_audios):
data_list = infer_model(audio_in=audio_path)
data, count = merge_audio_slice(audio_path, slice_dir, data_list, count, sample_rate, max_seconds, language, speaker_name)
for item_audio in data:
sliced_audio_path = item_audio['sliced_audio_path']
speaker_name = item_audio['speaker_name']
language = item_audio['language']
text = item_audio['text']
result.append(f"{sliced_audio_path}|{speaker_name}|{language}|{text}")
return result
def create_whisper_list(source_dir, target_dir, cache_dir, sample_rate, language, output_list, max_seconds, model_name):
resample_dir = os.path.join(cache_dir,"subfix","origin",f"{sample_rate}")
convert_files(source_dir, resample_dir, sample_rate)
lang_map = {
"ZH" : "Chinese",
"EN" : "English",
"JA" : "Japanese",
"RU" : "ru",
"DE" : "de",
"KO" : "ko"
}
language_map = lang_map[language] if (language in lang_map.keys()) else language
asr_model = Openai_Whisper(language = language_map, model_name = model_name)
result = create_whisper_dataset(resample_dir, target_dir, sample_rate = sample_rate, language = language, infer_model = asr_model, max_seconds = max_seconds)
with open(output_list, "w", encoding="utf-8") as file:
for line in result:
try:
file.write(line.strip() + '\n')
except UnicodeEncodeError:
print("UnicodeEncodeError: Can't encode to ASCII:", line)
def run_whisper_task(args):
create_whisper_list(args.source_dir, args.target_dir, args.cache_dir, args.sample_rate, args.language, args.output, args.max_seconds, args.model)