Spaces:
No application file
No application file
import argparse | |
import os | |
import re | |
import subprocess | |
import librosa | |
import numpy as np | |
import soundfile | |
from subfix.models.audio.asr import Openai_Whisper | |
from subfix.utils import convert_files | |
from subfix.utils.misc import merge_audio_slice, get_sub_dirs | |
def create_whisper_dataset(source_dir, target_dir, sample_rate, language, infer_model, max_seconds): | |
# source_dir, target_dir, sample_rate=44100, language = "ZH", inference_pipeline = None | |
roles = get_sub_dirs(source_dir) | |
count = 0 | |
result = [] | |
for speaker_name in roles: | |
source_audios = [f for f in os.listdir(os.path.join(source_dir, speaker_name)) if f.endswith(".wav")] | |
source_audios = [os.path.join(source_dir, speaker_name, filename) for filename in source_audios] | |
slice_dir = os.path.join(target_dir, speaker_name) | |
os.makedirs(slice_dir, exist_ok=True) | |
for audio_path in sorted(source_audios): | |
data_list = infer_model(audio_in=audio_path) | |
data, count = merge_audio_slice(audio_path, slice_dir, data_list, count, sample_rate, max_seconds, language, speaker_name) | |
for item_audio in data: | |
sliced_audio_path = item_audio['sliced_audio_path'] | |
speaker_name = item_audio['speaker_name'] | |
language = item_audio['language'] | |
text = item_audio['text'] | |
result.append(f"{sliced_audio_path}|{speaker_name}|{language}|{text}") | |
return result | |
def create_whisper_list(source_dir, target_dir, cache_dir, sample_rate, language, output_list, max_seconds, model_name): | |
resample_dir = os.path.join(cache_dir,"subfix","origin",f"{sample_rate}") | |
convert_files(source_dir, resample_dir, sample_rate) | |
lang_map = { | |
"ZH" : "Chinese", | |
"EN" : "English", | |
"JA" : "Japanese", | |
"RU" : "ru", | |
"DE" : "de", | |
"KO" : "ko" | |
} | |
language_map = lang_map[language] if (language in lang_map.keys()) else language | |
asr_model = Openai_Whisper(language = language_map, model_name = model_name) | |
result = create_whisper_dataset(resample_dir, target_dir, sample_rate = sample_rate, language = language, infer_model = asr_model, max_seconds = max_seconds) | |
with open(output_list, "w", encoding="utf-8") as file: | |
for line in result: | |
try: | |
file.write(line.strip() + '\n') | |
except UnicodeEncodeError: | |
print("UnicodeEncodeError: Can't encode to ASCII:", line) | |
def run_whisper_task(args): | |
create_whisper_list(args.source_dir, args.target_dir, args.cache_dir, args.sample_rate, args.language, args.output, args.max_seconds, args.model) | |