Spaces:
No application file
No application file
| # modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/train_t2s.py | |
| import os | |
| import pdb | |
| if("_CUDA_VISIBLE_DEVICES"in os.environ): | |
| os.environ["CUDA_VISIBLE_DEVICES"]=os.environ["_CUDA_VISIBLE_DEVICES"] | |
| import argparse | |
| import logging | |
| from pathlib import Path | |
| import torch,platform | |
| from pytorch_lightning import seed_everything | |
| from pytorch_lightning import Trainer | |
| from pytorch_lightning.callbacks import ModelCheckpoint | |
| from pytorch_lightning.loggers import TensorBoardLogger#WandbLogger | |
| from pytorch_lightning.strategies import DDPStrategy | |
| from AR.data.data_module import Text2SemanticDataModule | |
| from AR.models.t2s_lightning_module import Text2SemanticLightningModule | |
| from AR.utils.io import load_yaml_config | |
| logging.getLogger('numba').setLevel(logging.WARNING) | |
| logging.getLogger('matplotlib').setLevel(logging.WARNING) | |
| torch.set_float32_matmul_precision('high') | |
| from AR.utils import get_newest_ckpt | |
| from collections import OrderedDict | |
| class my_model_ckpt(ModelCheckpoint): | |
| def __init__(self,config,if_save_latest,if_save_every_weights,half_weights_save_dir,exp_name,**kwargs): | |
| super().__init__(**kwargs) | |
| self.if_save_latest=if_save_latest | |
| self.if_save_every_weights=if_save_every_weights | |
| self.half_weights_save_dir=half_weights_save_dir | |
| self.exp_name=exp_name | |
| self.config=config | |
| def on_train_epoch_end(self, trainer, pl_module): | |
| if not self._should_skip_saving_checkpoint(trainer) and self._should_save_on_train_epoch_end(trainer): | |
| monitor_candidates = self._monitor_candidates(trainer) | |
| if self._every_n_epochs >= 1 and (trainer.current_epoch + 1) % self._every_n_epochs == 0: | |
| if(self.if_save_latest==True):####如果设置只保存最后一个ckpt,在保存下一个ckpt后要清理掉之前的所有ckpt | |
| to_clean=list(os.listdir(self.dirpath)) | |
| self._save_topk_checkpoint(trainer, monitor_candidates) | |
| if (self.if_save_latest == True): | |
| for name in to_clean: | |
| try: | |
| os.remove("%s/%s"%(self.dirpath,name)) | |
| except:pass | |
| if(self.if_save_every_weights==True): | |
| to_save_od=OrderedDict() | |
| to_save_od["weight"]=OrderedDict() | |
| dictt=trainer.strategy._lightning_module.state_dict() | |
| for key in dictt:to_save_od["weight"][key]=dictt[key].half() | |
| to_save_od["config"]=self.config | |
| to_save_od["info"]="GPT-e%s"%(trainer.current_epoch+1) | |
| torch.save(to_save_od,"%s/%s-e%s.ckpt"%(self.half_weights_save_dir,self.exp_name,trainer.current_epoch+1)) | |
| self._save_last_checkpoint(trainer, monitor_candidates) | |
| def main(args): | |
| config = load_yaml_config(args.config_file) | |
| output_dir = Path(config["output_dir"]) | |
| output_dir.mkdir(parents=True, exist_ok=True) | |
| ckpt_dir = output_dir / 'ckpt' | |
| ckpt_dir.mkdir(parents=True, exist_ok=True) | |
| seed_everything(config["train"]["seed"], workers=True) | |
| # ckpt_callback: ModelCheckpoint = ModelCheckpoint( | |
| ckpt_callback: ModelCheckpoint = my_model_ckpt( | |
| config=config, | |
| if_save_latest=config["train"]["if_save_latest"], if_save_every_weights=config["train"]["if_save_every_weights"], half_weights_save_dir=config["train"]["half_weights_save_dir"], exp_name=config["train"]["exp_name"], | |
| save_top_k=-1, | |
| monitor='top_3_acc', | |
| mode='max', | |
| save_on_train_epoch_end=True, | |
| every_n_epochs=config["train"]["save_every_n_epoch"], | |
| dirpath=ckpt_dir, | |
| ) | |
| # logger = WandbLogger( | |
| logger = TensorBoardLogger( | |
| # project="ar_s1bert25hz-ft", | |
| name=output_dir.stem, | |
| save_dir=output_dir, | |
| # resume the loss curve | |
| # resume=True, | |
| # id='abc' | |
| ) | |
| trainer: Trainer = Trainer( | |
| max_epochs=config["train"]["epochs"], | |
| accelerator='gpu', | |
| # val_check_interval=9999999999999999999999,###不要验证 | |
| # check_val_every_n_epoch=None, | |
| limit_val_batches=0, | |
| devices=-1, | |
| benchmark=False, | |
| fast_dev_run=False, | |
| strategy=DDPStrategy(process_group_backend="nccl"if platform.system()!="Windows"else "gloo"), | |
| precision=config["train"]["precision"], | |
| logger=logger,num_sanity_val_steps=0, | |
| callbacks=[ckpt_callback]) | |
| model: Text2SemanticLightningModule = Text2SemanticLightningModule( | |
| config, output_dir) | |
| data_module: Text2SemanticDataModule = Text2SemanticDataModule( | |
| config, | |
| train_semantic_path=config["train_semantic_path"], | |
| train_phoneme_path=config["train_phoneme_path"], | |
| # dev_semantic_path=args.dev_semantic_path, | |
| # dev_phoneme_path=args.dev_phoneme_path | |
| ) | |
| try: | |
| # 使用正则表达式匹配文件名中的数字部分,并按数字大小进行排序 | |
| newest_ckpt_name = get_newest_ckpt(os.listdir(ckpt_dir)) | |
| ckpt_path = ckpt_dir / newest_ckpt_name | |
| except Exception: | |
| ckpt_path = None | |
| print("ckpt_path:", ckpt_path) | |
| trainer.fit(model, data_module, ckpt_path=ckpt_path) | |
| # srun --gpus-per-node=1 --ntasks-per-node=1 python train.py --path-to-configuration configurations/default.yaml | |
| if __name__ == '__main__': | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| '-c', | |
| '--config_file', | |
| type=str, | |
| default='configs/s1longer.yaml', | |
| help='path of config file') | |
| # args for dataset | |
| # parser.add_argument('--train_semantic_path',type=str,default='/data/docker/liujing04/gpt-vits/fine_tune_dataset/xuangou/6-name2semantic.tsv') | |
| # parser.add_argument('--train_phoneme_path', type=str, default='/data/docker/liujing04/gpt-vits/fine_tune_dataset/xuangou/2-name2text.txt') | |
| # parser.add_argument('--dev_semantic_path', type=str, default='dump_mix/semantic_dev.tsv') | |
| # parser.add_argument('--dev_phoneme_path', type=str, default='dump_mix/phoneme_dev.npy') | |
| # parser.add_argument('--output_dir',type=str,default='/data/docker/liujing04/gpt-vits/fine_tune_dataset/xuangou/logs_s1',help='directory to save the results') | |
| # parser.add_argument('--output_dir',type=str,default='/liujing04/gpt_logs/s1/xuangou_ft',help='directory to save the results') | |
| args = parser.parse_args() | |
| logging.info(str(args)) | |
| main(args) | |