Spaces:
No application file
No application file
| import utils,os | |
| hps = utils.get_hparams(stage=2) | |
| os.environ["CUDA_VISIBLE_DEVICES"] = hps.train.gpu_numbers.replace("-", ",") | |
| import torch | |
| from torch.nn import functional as F | |
| from torch.utils.data import DataLoader | |
| from torch.utils.tensorboard import SummaryWriter | |
| import torch.multiprocessing as mp | |
| import torch.distributed as dist,traceback | |
| from torch.nn.parallel import DistributedDataParallel as DDP | |
| from torch.cuda.amp import autocast, GradScaler | |
| from tqdm import tqdm | |
| import logging,traceback | |
| logging.getLogger("matplotlib").setLevel(logging.INFO) | |
| logging.getLogger("h5py").setLevel(logging.INFO) | |
| logging.getLogger("numba").setLevel(logging.INFO) | |
| from random import randint | |
| from module import commons | |
| from module.data_utils import ( | |
| TextAudioSpeakerLoader, | |
| TextAudioSpeakerCollate, | |
| DistributedBucketSampler | |
| ) | |
| from module.models import ( | |
| SynthesizerTrn, | |
| MultiPeriodDiscriminator, | |
| ) | |
| from module.losses import ( | |
| generator_loss, | |
| discriminator_loss, | |
| feature_loss, | |
| kl_loss | |
| ) | |
| from module.mel_processing import mel_spectrogram_torch, spec_to_mel_torch | |
| from process_ckpt import savee | |
| torch.backends.cudnn.benchmark = False | |
| torch.backends.cudnn.deterministic = False | |
| ###反正A100fp32更快,那试试tf32吧 | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| torch.backends.cudnn.allow_tf32 = True | |
| torch.set_float32_matmul_precision('medium')#最低精度但最快(也就快一丁点),对于结果造成不了影响 | |
| # from config import pretrained_s2G,pretrained_s2D | |
| global_step = 0 | |
| def main(): | |
| """Assume Single Node Multi GPUs Training Only""" | |
| assert torch.cuda.is_available(), "CPU training is not allowed." | |
| n_gpus = torch.cuda.device_count() | |
| os.environ['MASTER_ADDR'] = 'localhost' | |
| os.environ['MASTER_PORT'] = str(randint(20000, 55555)) | |
| mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,)) | |
| def run(rank, n_gpus, hps): | |
| global global_step | |
| if rank == 0: | |
| logger = utils.get_logger(hps.data.exp_dir) | |
| logger.info(hps) | |
| # utils.check_git_hash(hps.s2_ckpt_dir) | |
| writer = SummaryWriter(log_dir=hps.s2_ckpt_dir) | |
| writer_eval = SummaryWriter(log_dir=os.path.join(hps.s2_ckpt_dir, "eval")) | |
| dist.init_process_group(backend='gloo' if os.name == 'nt' else 'nccl', init_method='env://', world_size=n_gpus,rank=rank) | |
| torch.manual_seed(hps.train.seed) | |
| torch.cuda.set_device(rank) | |
| train_dataset = TextAudioSpeakerLoader(hps.data)######## | |
| train_sampler = DistributedBucketSampler( | |
| train_dataset, | |
| hps.train.batch_size, | |
| [32, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900], | |
| num_replicas=n_gpus, | |
| rank=rank, | |
| shuffle=True) | |
| collate_fn = TextAudioSpeakerCollate() | |
| train_loader = DataLoader(train_dataset, num_workers=6, shuffle=False, pin_memory=True, | |
| collate_fn=collate_fn, batch_sampler=train_sampler,persistent_workers=True,prefetch_factor=16) | |
| # if rank == 0: | |
| # eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data, val=True) | |
| # eval_loader = DataLoader(eval_dataset, num_workers=0, shuffle=False, | |
| # batch_size=1, pin_memory=True, | |
| # drop_last=False, collate_fn=collate_fn) | |
| net_g = SynthesizerTrn( | |
| hps.data.filter_length // 2 + 1, | |
| hps.train.segment_size // hps.data.hop_length, | |
| n_speakers=hps.data.n_speakers, | |
| **hps.model).cuda(rank) | |
| net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank) | |
| for name, param in net_g.named_parameters(): | |
| if not param.requires_grad: | |
| print(name,"not requires_grad") | |
| te_p = list(map(id, net_g.enc_p.text_embedding.parameters())) | |
| et_p = list(map(id, net_g.enc_p.encoder_text.parameters())) | |
| mrte_p = list(map(id, net_g.enc_p.mrte.parameters())) | |
| base_params = filter(lambda p: id(p) not in te_p+et_p+mrte_p and p.requires_grad, net_g.parameters()) | |
| # te_p=net_g.enc_p.text_embedding.parameters() | |
| # et_p=net_g.enc_p.encoder_text.parameters() | |
| # mrte_p=net_g.enc_p.mrte.parameters() | |
| optim_g = torch.optim.AdamW( | |
| # filter(lambda p: p.requires_grad, net_g.parameters()),###默认所有层lr一致 | |
| [ | |
| {"params":base_params,"lr":hps.train.learning_rate}, | |
| {"params":net_g.enc_p.text_embedding.parameters(),"lr":hps.train.learning_rate*hps.train.text_low_lr_rate}, | |
| {"params":net_g.enc_p.encoder_text.parameters(),"lr":hps.train.learning_rate*hps.train.text_low_lr_rate}, | |
| {"params":net_g.enc_p.mrte.parameters(),"lr":hps.train.learning_rate*hps.train.text_low_lr_rate}, | |
| ], | |
| hps.train.learning_rate, | |
| betas=hps.train.betas, | |
| eps=hps.train.eps) | |
| optim_d = torch.optim.AdamW( | |
| net_d.parameters(), | |
| hps.train.learning_rate, | |
| betas=hps.train.betas, | |
| eps=hps.train.eps) | |
| net_g = DDP(net_g, device_ids=[rank],find_unused_parameters=True) | |
| net_d = DDP(net_d, device_ids=[rank],find_unused_parameters=True) | |
| try: # 如果能加载自动resume | |
| _, _, _, epoch_str = utils.load_checkpoint( | |
| utils.latest_checkpoint_path("%s/logs_s2"%hps.data.exp_dir, "D_*.pth"), net_d, optim_d | |
| ) # D多半加载没事 | |
| if rank == 0: | |
| logger.info("loaded D") | |
| # _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g,load_opt=0) | |
| _, _, _, epoch_str = utils.load_checkpoint( | |
| utils.latest_checkpoint_path("%s/logs_s2"%hps.data.exp_dir, "G_*.pth"), net_g, optim_g | |
| ) | |
| global_step = (epoch_str - 1) * len(train_loader) | |
| # epoch_str = 1 | |
| # global_step = 0 | |
| except: # 如果首次不能加载,加载pretrain | |
| # traceback.print_exc() | |
| epoch_str = 1 | |
| global_step = 0 | |
| if hps.train.pretrained_s2G != "": | |
| if rank == 0: | |
| logger.info("loaded pretrained %s" % hps.train.pretrained_s2G) | |
| print( | |
| net_g.module.load_state_dict( | |
| torch.load(hps.train.pretrained_s2G, map_location="cpu")["weight"],strict=False | |
| ) | |
| ) ##测试不加载优化器 | |
| if hps.train.pretrained_s2D != "": | |
| if rank == 0: | |
| logger.info("loaded pretrained %s" % hps.train.pretrained_s2D) | |
| print( | |
| net_d.module.load_state_dict( | |
| torch.load(hps.train.pretrained_s2D, map_location="cpu")["weight"] | |
| ) | |
| ) | |
| # scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2) | |
| # scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2) | |
| scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=-1) | |
| scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=-1) | |
| for _ in range(epoch_str): | |
| scheduler_g.step() | |
| scheduler_d.step() | |
| scaler = GradScaler(enabled=hps.train.fp16_run) | |
| for epoch in range(epoch_str, hps.train.epochs + 1): | |
| if rank == 0: | |
| train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, | |
| # [train_loader, eval_loader], logger, [writer, writer_eval]) | |
| [train_loader, None], logger, [writer, writer_eval]) | |
| else: | |
| train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, | |
| [train_loader, None], None, None) | |
| scheduler_g.step() | |
| scheduler_d.step() | |
| def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers): | |
| net_g, net_d = nets | |
| optim_g, optim_d = optims | |
| # scheduler_g, scheduler_d = schedulers | |
| train_loader, eval_loader = loaders | |
| if writers is not None: | |
| writer, writer_eval = writers | |
| train_loader.batch_sampler.set_epoch(epoch) | |
| global global_step | |
| net_g.train() | |
| net_d.train() | |
| for batch_idx, (ssl, ssl_lengths, spec, spec_lengths, y, y_lengths, text, text_lengths) in tqdm(enumerate(train_loader)): | |
| spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(rank, non_blocking=True) | |
| y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(rank, non_blocking=True) | |
| ssl = ssl.cuda(rank, non_blocking=True) | |
| ssl.requires_grad=False | |
| # ssl_lengths = ssl_lengths.cuda(rank, non_blocking=True) | |
| text, text_lengths = text.cuda(rank, non_blocking=True), text_lengths.cuda(rank, non_blocking=True) | |
| with autocast(enabled=hps.train.fp16_run): | |
| y_hat, kl_ssl, ids_slice, x_mask, z_mask, \ | |
| (z, z_p, m_p, logs_p, m_q, logs_q), stats_ssl = net_g(ssl, spec, spec_lengths, text, text_lengths) | |
| mel = spec_to_mel_torch( | |
| spec, | |
| hps.data.filter_length, | |
| hps.data.n_mel_channels, | |
| hps.data.sampling_rate, | |
| hps.data.mel_fmin, | |
| hps.data.mel_fmax) | |
| y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length) | |
| y_hat_mel = mel_spectrogram_torch( | |
| y_hat.squeeze(1), | |
| hps.data.filter_length, | |
| hps.data.n_mel_channels, | |
| hps.data.sampling_rate, | |
| hps.data.hop_length, | |
| hps.data.win_length, | |
| hps.data.mel_fmin, | |
| hps.data.mel_fmax | |
| ) | |
| y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice | |
| # Discriminator | |
| y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach()) | |
| with autocast(enabled=False): | |
| loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g) | |
| loss_disc_all = loss_disc | |
| optim_d.zero_grad() | |
| scaler.scale(loss_disc_all).backward() | |
| scaler.unscale_(optim_d) | |
| grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None) | |
| scaler.step(optim_d) | |
| with autocast(enabled=hps.train.fp16_run): | |
| # Generator | |
| y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat) | |
| with autocast(enabled=False): | |
| loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel | |
| loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl | |
| loss_fm = feature_loss(fmap_r, fmap_g) | |
| loss_gen, losses_gen = generator_loss(y_d_hat_g) | |
| loss_gen_all = loss_gen + loss_fm + loss_mel + kl_ssl * 1 + loss_kl | |
| optim_g.zero_grad() | |
| scaler.scale(loss_gen_all).backward() | |
| scaler.unscale_(optim_g) | |
| grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None) | |
| scaler.step(optim_g) | |
| scaler.update() | |
| if rank == 0: | |
| if global_step % hps.train.log_interval == 0: | |
| lr = optim_g.param_groups[0]['lr'] | |
| losses = [loss_disc, loss_gen, loss_fm, loss_mel, kl_ssl, loss_kl] | |
| logger.info('Train Epoch: {} [{:.0f}%]'.format( | |
| epoch, | |
| 100. * batch_idx / len(train_loader))) | |
| logger.info([x.item() for x in losses] + [global_step, lr]) | |
| scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr, | |
| "grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g} | |
| scalar_dict.update( | |
| {"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/kl_ssl": kl_ssl, "loss/g/kl": loss_kl}) | |
| # scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)}) | |
| # scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)}) | |
| # scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)}) | |
| image_dict = { | |
| "slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()), | |
| "slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()), | |
| "all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()), | |
| "all/stats_ssl": utils.plot_spectrogram_to_numpy(stats_ssl[0].data.cpu().numpy()), | |
| } | |
| utils.summarize( | |
| writer=writer, | |
| global_step=global_step, | |
| images=image_dict, | |
| scalars=scalar_dict) | |
| global_step += 1 | |
| if epoch % hps.train.save_every_epoch == 0 and rank == 0: | |
| if hps.train.if_save_latest == 0: | |
| utils.save_checkpoint( | |
| net_g, | |
| optim_g, | |
| hps.train.learning_rate, | |
| epoch, | |
| os.path.join("%s/logs_s2"%hps.data.exp_dir, "G_{}.pth".format(global_step)), | |
| ) | |
| utils.save_checkpoint( | |
| net_d, | |
| optim_d, | |
| hps.train.learning_rate, | |
| epoch, | |
| os.path.join("%s/logs_s2"%hps.data.exp_dir, "D_{}.pth".format(global_step)), | |
| ) | |
| else: | |
| utils.save_checkpoint( | |
| net_g, | |
| optim_g, | |
| hps.train.learning_rate, | |
| epoch, | |
| os.path.join("%s/logs_s2"%hps.data.exp_dir, "G_{}.pth".format(233333333333)), | |
| ) | |
| utils.save_checkpoint( | |
| net_d, | |
| optim_d, | |
| hps.train.learning_rate, | |
| epoch, | |
| os.path.join("%s/logs_s2"%hps.data.exp_dir, "D_{}.pth".format(233333333333)), | |
| ) | |
| if rank == 0 and hps.train.if_save_every_weights == True: | |
| if hasattr(net_g, "module"): | |
| ckpt = net_g.module.state_dict() | |
| else: | |
| ckpt = net_g.state_dict() | |
| logger.info( | |
| "saving ckpt %s_e%s:%s" | |
| % ( | |
| hps.name, | |
| epoch, | |
| savee( | |
| ckpt, | |
| hps.name + "_e%s_s%s" % (epoch, global_step), | |
| epoch, | |
| global_step, | |
| hps, | |
| ), | |
| ) | |
| ) | |
| if rank == 0: | |
| logger.info('====> Epoch: {}'.format(epoch)) | |
| def evaluate(hps, generator, eval_loader, writer_eval): | |
| generator.eval() | |
| image_dict = {} | |
| audio_dict = {} | |
| print("Evaluating ...") | |
| with torch.no_grad(): | |
| for batch_idx, (ssl, ssl_lengths, spec, spec_lengths, y, y_lengths, text, text_lengths) in enumerate(eval_loader): | |
| print(111) | |
| spec, spec_lengths = spec.cuda(), spec_lengths.cuda() | |
| y, y_lengths = y.cuda(), y_lengths.cuda() | |
| ssl = ssl.cuda() | |
| text, text_lengths = text.cuda(), text_lengths.cuda() | |
| for test in [0, 1]: | |
| y_hat, mask, *_ = generator.module.infer(ssl,spec, spec_lengths,text, text_lengths, test=test) | |
| y_hat_lengths = mask.sum([1, 2]).long() * hps.data.hop_length | |
| mel = spec_to_mel_torch( | |
| spec, | |
| hps.data.filter_length, | |
| hps.data.n_mel_channels, | |
| hps.data.sampling_rate, | |
| hps.data.mel_fmin, | |
| hps.data.mel_fmax) | |
| y_hat_mel = mel_spectrogram_torch( | |
| y_hat.squeeze(1).float(), | |
| hps.data.filter_length, | |
| hps.data.n_mel_channels, | |
| hps.data.sampling_rate, | |
| hps.data.hop_length, | |
| hps.data.win_length, | |
| hps.data.mel_fmin, | |
| hps.data.mel_fmax | |
| ) | |
| image_dict.update({ | |
| f"gen/mel_{batch_idx}_{test}": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy()) | |
| }) | |
| audio_dict.update({ | |
| f"gen/audio_{batch_idx}_{test}": y_hat[0, :, :y_hat_lengths[0]] | |
| }) | |
| image_dict.update({f"gt/mel_{batch_idx}": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())}) | |
| audio_dict.update({f"gt/audio_{batch_idx}": y[0, :, :y_lengths[0]]}) | |
| # y_hat, mask, *_ = generator.module.infer(ssl, spec_lengths, speakers, y=None) | |
| # audio_dict.update({ | |
| # f"gen/audio_{batch_idx}_style_pred": y_hat[0, :, :] | |
| # }) | |
| utils.summarize( | |
| writer=writer_eval, | |
| global_step=global_step, | |
| images=image_dict, | |
| audios=audio_dict, | |
| audio_sampling_rate=hps.data.sampling_rate | |
| ) | |
| generator.train() | |
| if __name__ == "__main__": | |
| main() | |