kevinwang676's picture
Upload folder using huggingface_hub
1b6bcbc verified
raw
history blame
7.46 kB
import argparse
import os
import re
import subprocess
import librosa
import numpy as np
import soundfile
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
def get_sub_dirs(source_dir):
sub_dir = [f for f in os.listdir(source_dir) if not f.startswith('.')]
sub_dir = [f for f in sub_dir if os.path.isdir(os.path.join(source_dir, f))]
return sub_dir
def is_sentence_ending(sentence):
if re.search(r'[。?!……]$', sentence):
return True
return False
def resample_audios(origin_dir, resample_dir, sample_rate):
print("start resample audios")
os.makedirs(resample_dir, exist_ok=True)
dirs = get_sub_dirs(origin_dir)
try:
subprocess.run(["ffmpeg", "-version"], capture_output=True, check=True)
ffmpeg_installed = True
print("ffmpeg installed. use ffmpeg.")
except Exception as e:
ffmpeg_installed = False
print("ERROR! ffmpeg is not installed. use librosa.")
for dir in dirs:
source_dir = os.path.join(origin_dir, dir)
target_dir = os.path.join(resample_dir, dir)
os.makedirs(target_dir, exist_ok=True)
listdir = list(os.listdir(source_dir))
listdir_len = len(listdir)
for index, f in enumerate(listdir, start=1):
if f.endswith(".wav") or f.endswith(".mp3"):
file_path = os.path.join(source_dir, f)
target_path = os.path.join(target_dir, f)
target_path = os.path.splitext(target_path)[0] + '.wav'
if os.path.exists(target_path):
continue
if ffmpeg_installed:
process = subprocess.run(["ffmpeg", "-y", "-i", file_path, "-ar", f"{sample_rate}", "-ac", "1", "-v", "quiet", target_path])
else:
try:
print(f"{index}/{listdir_len} file")
data, sample_rate = librosa.load(file_path, sr=sample_rate, mono=True)
soundfile.write(target_path, data, sample_rate)
except Exception as e:
print(f"\n{file_path} convert fail.")
finally:
pass
def create_dataset(source_dir, target_dir, sample_rate, language, inference_pipeline, max_seconds):
# source_dir, target_dir, sample_rate=44100, language = "ZH", inference_pipeline = None
roles = get_sub_dirs(source_dir)
count = 0
result = []
for speaker_name in roles:
source_audios = [f for f in os.listdir(os.path.join(source_dir, speaker_name)) if f.endswith(".wav")]
source_audios = [os.path.join(source_dir, speaker_name, filename) for filename in source_audios]
slice_dir = os.path.join(target_dir, speaker_name)
os.makedirs(slice_dir, exist_ok=True)
for audio_path in source_audios:
rec_result = inference_pipeline(audio_in=audio_path) # dict_keys(['text', 'text_postprocessed', 'time_stamp', 'sentences'])
data, sample_rate = librosa.load(audio_path, sr=sample_rate, mono=True)
sentence_list = []
audio_list = []
time_length = 0
for sentence in rec_result['sentences']:
text = sentence['text'].strip()
if (text == ""):
continue
start = int((sentence['start'] / 1000) * sample_rate)
end = int((sentence['end'] / 1000) * sample_rate)
if time_length > 0 and time_length + ((sentence['end'] - sentence['start']) / 1000) > max_seconds:
sliced_audio_name = f"{str(count).zfill(6)}"
sliced_audio_path = os.path.join(slice_dir, sliced_audio_name+".wav")
s_sentence = "".join(sentence_list)
if not re.search(r"[。!?]$", s_sentence):
sentence_end = s_sentence[-1]
s_sentence = s_sentence[:-1] + '。' if sentence_end != '。' else s_sentence
audio_concat = np.concatenate(audio_list)
if time_length > max_seconds:
print(f"[too long voice]:{sliced_audio_path}, voice_length:{time_length} seconds")
soundfile.write(sliced_audio_path, audio_concat, sample_rate)
result.append(
f"{sliced_audio_path}|{speaker_name}|{language}|{s_sentence}"
)
sentence_list = []
audio_list = []
time_length = 0
count = count + 1
sentence_list.append(text)
audio_list.append(data[start:end])
time_length = time_length + ((sentence['end'] - sentence['start']) / 1000)
if ( is_sentence_ending(text) ):
sliced_audio_name = f"{str(count).zfill(6)}"
sliced_audio_path = os.path.join(slice_dir, sliced_audio_name+".wav")
s_sentence = "".join(sentence_list)
audio_concat = np.concatenate(audio_list)
soundfile.write(sliced_audio_path, audio_concat, sample_rate)
result.append(
f"{sliced_audio_path}|{speaker_name}|{language}|{s_sentence}"
)
sentence_list = []
audio_list = []
time_length = 0
count = count + 1
return result
def create_list(source_dir, target_dir, resample_dir, sample_rate, language, output_list, max_seconds):
resample_audios(source_dir, resample_dir, sample_rate)
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model='damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch',
model_revision="v1.2.4")
result = create_dataset(resample_dir, target_dir, sample_rate = sample_rate, language = language, inference_pipeline = inference_pipeline, max_seconds = max_seconds)
with open(output_list, "w", encoding="utf-8") as file:
for line in result:
try:
file.write(line.strip() + '\n')
except UnicodeEncodeError:
print("UnicodeEncodeError: Can't encode to ASCII:", line)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--source_dir", type=str, default="origin", help="Source directory path, Default: origin")
parser.add_argument("--target_dir", type=str, default="dataset", help="Target directory path, Default: dataset")
parser.add_argument("--resample_dir", type=str, default="origin_resample", help="Resample directory path, Default: origin_resample")
parser.add_argument("--sample_rate", type=int, default=44100, help="Sample rate, Default: 44100")
parser.add_argument("--language", type=str, default="ZH", help="Language, Default: ZH")
parser.add_argument("--output", type=str, default="demo.list", help="List file, Default: demo.list")
parser.add_argument("--max_seconds", type=int, default=15, help="Max sliced voice length(seconds), Default: 15")
args = parser.parse_args()
create_list(args.source_dir, args.target_dir, args.resample_dir, args.sample_rate, args.language, args.output, args.max_seconds)