import torch import torchaudio import gradio as gr from scipy.io import wavfile from scipy.io.wavfile import write knn_vc = torch.hub.load('bshall/knn-vc', 'knn_vc', prematched=True, trust_repo=True, pretrained=True, device='cpu') def voice_change(audio_in, audio_ref): samplerate1, data1 = wavfile.read(audio_in) samplerate2, data2 = wavfile.read(audio_ref) write("./audio_in.wav", samplerate1, data1) write("./audio_ref.wav", samplerate2, data2) query_seq = knn_vc.get_features("./audio_in.wav") matching_set = knn_vc.get_matching_set(["./audio_ref.wav"]) out_wav = knn_vc.match(query_seq, matching_set, topk=4) torchaudio.save('output.wav', out_wav[None], 16000) return 'output.wav' app = gr.Blocks() with app: gr.Markdown("#
🥳🎶🎡 - KNN-VC AI变声
") gr.Markdown("###
🌟 - 3秒实时AI变声,支持中日英在内的所有语言!无需训练、一键变声!🍻
") gr.Markdown("###
🌊 - 更多精彩应用,敬请关注[滔滔AI](http://www.talktalkai.com);滔滔AI,为爱滔滔!💕
") with gr.Row(): with gr.Column(): inp1 = gr.Audio(type="filepath", label="请上传AI变声的原音频(决定变声后的语音内容)") inp2 = gr.Audio(type="filepath", label="请上传AI变声的参照音频(决定变声后的语音音色)") btn1 = gr.Button("一键开启AI变声吧", variant="primary") with gr.Column(): out1 = gr.Audio(type="filepath", label="AI变声后的专属音频") btn1.click(voice_change, [inp1, inp2], out1) gr.Markdown("###
注意❗:请不要生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习及个人娱乐使用。
") gr.HTML(''' ''') app.launch(show_error=True)