File size: 12,943 Bytes
6755a2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import json
import os
import time
from typing import Literal, Optional, Union, List, Tuple
from tqdm import tqdm

from PIL import Image
from torch import nn
from transformers import (
    CLIPVisionModelWithProjection,
    CLIPImageProcessor,
    AutoProcessor,
)

import h5py
import torch
import numpy as np

from ...data.extract_feature.base_extract_feature import BaseFeatureExtractor
from ...data.emb.h5py_emb import save_value_with_h5py

from ..process.image_process import dynamic_crop_resize_image
from ..utils.data_type_util import convert_images


__all__ = [
    "ImageClipVisionFeatureExtractor",
    "ImageClipVisionFeatureExtractorV2",
    "ImageClipVisionFeatureExtractorV3",
    "ImageClipVisionFeatureExtractorV4",
    "VerstailSDLastHiddenState2ImageEmb",
    "OriginLastHiddenState2ImageEmbd",
    "OriginLastHiddenState2Poolout",
]


class ImageClipVisionFeatureExtractor(BaseFeatureExtractor):
    """选择clip的image_embeds,一张图像的输出特征是N,根据模型的选择可能是512、768、1024

    Args:
        BaseFeatureExtractor (_type_): _description_
    """

    def __init__(
        self,
        pretrained_model_name_or_path: str,
        name: str = None,
        device: str = "cpu",
        dtype=torch.float32,
    ):
        super().__init__(device, dtype, name)
        self.pretrained_model_name_or_path = pretrained_model_name_or_path
        # 保持和 ipadapter 一致
        self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(
            pretrained_model_name_or_path
        ).to(device=device, dtype=dtype)
        # TODO: 存在多种初始化代码,待后续统一
        if os.path.isdir(pretrained_model_name_or_path):
            self.clip_image_processor = CLIPImageProcessor()
        else:
            self.clip_image_processor = AutoProcessor.from_pretrained(
                pretrained_model_name_or_path
            )

    def extract_images(
        self,
        data: Union[str, List[str], Image.Image, List[Image.Image], np.ndarray],
        target_width: int = None,
        target_height: int = None,
        return_type: str = "numpy",
        input_rgb_order: str = "rgb",
    ) -> Union[np.ndarray, torch.Tensor]:
        data = convert_images(data, return_type="pil", input_rgb_order=input_rgb_order)
        if target_height is not None and target_width is not None:
            data = [
                dynamic_crop_resize_image(
                    image,
                    target_height=target_height,
                    target_width=target_width,
                )
                for image in data
            ]

        with torch.no_grad():
            clip_image = self.clip_image_processor(
                images=data, return_tensors="pt"
            ).pixel_values
            emb = self.get_target_emb(
                clip_image.to(device=self.device, dtype=self.dtype)
            )
        if return_type == "numpy":
            emb = emb.cpu().numpy()
        return emb

    def get_target_emb(self, data):
        outputs = self.image_encoder(data).image_embeds
        return outputs

    def extract_video(
        self,
        video_dataset,
        target_width: int = None,
        target_height: int = None,
        return_type: str = "numpy",
        track_performance: bool = False,
        input_rgb_order: str = "rgb",
    ) -> Union[np.ndarray, torch.Tensor]:
        embs = []
        sample_indexs = []
        if track_performance:
            performance = {}
        with torch.no_grad():
            for i, (batch, batch_index) in enumerate(video_dataset):
                # TODO: 现阶段复用hugging face diffusers img2img pipeline中的抽取代码,
                # 由于该代码目前只支持Image的预处理,故先将numpy.ndarray转换成PIL.Image
                batch = [Image.fromarray(batch[b_i]) for b_i in range(len(batch))]
                emb = self.extract_images(
                    data=batch,
                    target_width=target_width,
                    target_height=target_height,
                    return_type=return_type,
                    input_rgb_order=input_rgb_order,
                )
                embs.append(emb)
                sample_indexs.extend(batch_index)
        sample_indexs = np.array(sample_indexs)
        if return_type == "numpy":
            embs = np.concatenate(embs, axis=0)
        elif return_type == "torch":
            embs = torch.concat(embs)
            sample_indexs = torch.from_numpy(sample_indexs)
        return sample_indexs, embs

    def extract(
        self,
        data: Union[str, List[str]],
        data_type: Literal["image", "video"],
        return_type: str = "numpy",
        save_emb_path: str = None,
        save_type: str = "h5py",
        emb_key: str = "image_embeds",
        sample_index_key: str = "sample_indexs",
        insert_name_to_key: bool = False,
        overwrite: bool = False,
        input_rgb_order: str = "rgb",
        save_sample_index: bool = True,
        **kwargs,
    ) -> Union[np.ndarray, torch.tensor]:
        if self.name is not None and insert_name_to_key:
            emb_key = f"{self.name}_{emb_key}"
            sample_index_key = f"{self.name}_{sample_index_key}"
        if save_emb_path is not None and os.path.exists(save_emb_path):
            with h5py.File(save_emb_path, "r") as f:
                if not overwrite and emb_key in f and sample_index_key in f:
                    return None

        if data_type == "image":
            emb = self.extract_images(
                data=data,
                return_type=return_type,
                input_rgb_order=input_rgb_order,
                **kwargs,
            )
            if save_emb_path is None:
                return emb
            else:
                raise NotImplementedError("save images emb")
        elif data_type == "video":
            sample_indexs, emb = self.extract_video(
                video_dataset=data,
                return_type=return_type,
                input_rgb_order=input_rgb_order,
                **kwargs,
            )
            if save_emb_path is None:
                return sample_indexs, emb
            else:
                if save_type == "h5py":
                    self.save_video_emb_with_h5py(
                        save_emb_path=save_emb_path,
                        emb=emb,
                        emb_key=emb_key,
                        sample_indexs=sample_indexs,
                        sample_index_key=sample_index_key,
                        overwrite=overwrite,
                        save_sample_index=save_sample_index,
                    )
                    return sample_indexs, emb
                else:
                    raise ValueError(f"only support save_type={save_type}")

    @staticmethod
    def save_images_emb_with_h5py(
        save_emb_path: str,
        emb: np.ndarray = None,
        emb_key: str = "image_embeds",
    ) -> h5py.File:
        save_value_with_h5py(save_emb_path, value=emb, key=emb_key)

    @staticmethod
    def save_video_emb_with_h5py(
        save_emb_path: str,
        emb: np.ndarray = None,
        emb_key: str = "image_embeds",
        sample_indexs: np.ndarray = None,
        sample_index_key: str = "sample_indexs",
        overwrite: bool = False,
        save_sample_index: bool = True,
    ) -> h5py.File:
        save_value_with_h5py(
            save_emb_path,
            value=emb,
            key=emb_key,
            overwrite=overwrite,
            dtype=np.float16,
        )
        if save_sample_index:
            save_value_with_h5py(
                save_emb_path,
                value=sample_indexs,
                key=sample_index_key,
                overwrite=overwrite,
                dtype=np.uint32,
            )


class ImageClipVisionFeatureExtractorV2(ImageClipVisionFeatureExtractor):
    """选择clip的 hidden_states[-2],一张图像的输出特征是M*D,如257*1280,

    Args:
        BaseFeatureExtractor (_type_): _description_
    """

    def __init__(
        self,
        pretrained_model_name_or_path: str,
        name: str = None,
        device: str = "cpu",
        dtype=torch.float32,
    ):
        super().__init__(pretrained_model_name_or_path, name, device, dtype)

    def get_target_emb(self, data):
        outputs = self.image_encoder(data, output_hidden_states=True).hidden_states[-2]
        return outputs


class ImageClipVisionFeatureExtractorV3(ImageClipVisionFeatureExtractor):
    """选择clip的 hidden_states[-2],一张图像的输出特征是M*D,如257*1280,

    Args:
        BaseFeatureExtractor (_type_): _description_
    """

    def __init__(
        self,
        pretrained_model_name_or_path: str,
        name: str = None,
        device: str = "cpu",
        dtype=torch.float32,
    ):
        super().__init__(pretrained_model_name_or_path, name, device, dtype)

    def get_target_emb(self, data):
        outputs = self.image_encoder(data, output_hidden_states=True).last_hidden_state
        return outputs


class ImageClipVisionFeatureExtractorV4(ImageClipVisionFeatureExtractor):
    """
    参考 https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py#L114

    Args:
        BaseFeatureExtractor (_type_): _description_
    """

    def __init__(
        self,
        pretrained_model_name_or_path: str,
        name: str = None,
        device: str = "cpu",
        dtype=torch.float32,
    ):
        super().__init__(pretrained_model_name_or_path, name, device, dtype)

    def get_target_emb(self, data):
        encoder_output = self.image_encoder(data, output_hidden_states=True)
        embeds = self.image_encoder.vision_model.post_layernorm(
            encoder_output.last_hidden_state
        )
        embeds = self.image_encoder.visual_projection(embeds)
        embeds_pooled = embeds[:, 0:1]
        embeds = embeds / torch.norm(embeds_pooled, dim=-1, keepdim=True)
        return embeds


class OriginLastHiddenState2Poolout(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        projection_dim: int,
        layer_norm_eps: float,
    ):
        super().__init__()
        self.post_layernorm = nn.LayerNorm(hidden_size, eps=layer_norm_eps)
        self.visual_projection = nn.Linear(hidden_size, projection_dim, bias=False)

    def load_state_dict_from_pretrained(self, pretrained_model_name_or_path):
        model_pretrained = torch.load(
            os.path.join(pretrained_model_name_or_path, "pytorch_model.bin"),
            map_location="cpu",
        )
        post_layernorm_params = {
            k.replace("vision_model.post_layernorm.", ""): v
            for k, v in model_pretrained.items()
            if "vision_model.post_layernorm." in k
        }
        self.post_layernorm.load_state_dict(post_layernorm_params)
        visual_projection_params = {
            k.replace("visual_projection.", ""): v
            for k, v in model_pretrained.items()
            if "visual_projection." in k
        }
        self.visual_projection.load_state_dict(visual_projection_params)

    @classmethod
    def from_pretrained(
        cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs
    ):
        cfg_path = os.path.join(pretrained_model_name_or_path, "config.json")
        with open(cfg_path, "r") as f:
            config = json.load(f)
        model = cls(
            hidden_size=config["hidden_size"],
            projection_dim=config["projection_dim"],
            layer_norm_eps=config["layer_norm_eps"],
        )
        model.load_state_dict_from_pretrained(pretrained_model_name_or_path)
        return model

    def forward(self, data):
        last_hidden_state = data
        pooled_output = last_hidden_state[:, 0, :]
        pooled_output = self.post_layernorm(pooled_output)
        # image_embeds = self.visual_projection(pooled_output)
        return pooled_output


class OriginLastHiddenState2ImageEmbd(OriginLastHiddenState2Poolout):
    def __init__(self, hidden_size: int, projection_dim: int, layer_norm_eps: float):
        super().__init__(hidden_size, projection_dim, layer_norm_eps)

    def forward(self, data):
        pooled_output = super().forward(data)
        image_embeds = self.visual_projection(pooled_output)
        return image_embeds


class VerstailSDLastHiddenState2ImageEmb(OriginLastHiddenState2ImageEmbd):
    def __init__(self, hidden_size: int, projection_dim: int, layer_norm_eps: float):
        super().__init__(hidden_size, projection_dim, layer_norm_eps)

    def forward(self, data):
        embeds = self.post_layernorm(data)
        embeds = self.visual_projection(embeds)
        embeds_pooled = embeds[:, 0:1]
        embeds = embeds / torch.norm(embeds_pooled, dim=-1, keepdim=True)
        return embeds