Spaces:
No application file
No application file
File size: 12,943 Bytes
6755a2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
import json
import os
import time
from typing import Literal, Optional, Union, List, Tuple
from tqdm import tqdm
from PIL import Image
from torch import nn
from transformers import (
CLIPVisionModelWithProjection,
CLIPImageProcessor,
AutoProcessor,
)
import h5py
import torch
import numpy as np
from ...data.extract_feature.base_extract_feature import BaseFeatureExtractor
from ...data.emb.h5py_emb import save_value_with_h5py
from ..process.image_process import dynamic_crop_resize_image
from ..utils.data_type_util import convert_images
__all__ = [
"ImageClipVisionFeatureExtractor",
"ImageClipVisionFeatureExtractorV2",
"ImageClipVisionFeatureExtractorV3",
"ImageClipVisionFeatureExtractorV4",
"VerstailSDLastHiddenState2ImageEmb",
"OriginLastHiddenState2ImageEmbd",
"OriginLastHiddenState2Poolout",
]
class ImageClipVisionFeatureExtractor(BaseFeatureExtractor):
"""选择clip的image_embeds,一张图像的输出特征是N,根据模型的选择可能是512、768、1024
Args:
BaseFeatureExtractor (_type_): _description_
"""
def __init__(
self,
pretrained_model_name_or_path: str,
name: str = None,
device: str = "cpu",
dtype=torch.float32,
):
super().__init__(device, dtype, name)
self.pretrained_model_name_or_path = pretrained_model_name_or_path
# 保持和 ipadapter 一致
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(
pretrained_model_name_or_path
).to(device=device, dtype=dtype)
# TODO: 存在多种初始化代码,待后续统一
if os.path.isdir(pretrained_model_name_or_path):
self.clip_image_processor = CLIPImageProcessor()
else:
self.clip_image_processor = AutoProcessor.from_pretrained(
pretrained_model_name_or_path
)
def extract_images(
self,
data: Union[str, List[str], Image.Image, List[Image.Image], np.ndarray],
target_width: int = None,
target_height: int = None,
return_type: str = "numpy",
input_rgb_order: str = "rgb",
) -> Union[np.ndarray, torch.Tensor]:
data = convert_images(data, return_type="pil", input_rgb_order=input_rgb_order)
if target_height is not None and target_width is not None:
data = [
dynamic_crop_resize_image(
image,
target_height=target_height,
target_width=target_width,
)
for image in data
]
with torch.no_grad():
clip_image = self.clip_image_processor(
images=data, return_tensors="pt"
).pixel_values
emb = self.get_target_emb(
clip_image.to(device=self.device, dtype=self.dtype)
)
if return_type == "numpy":
emb = emb.cpu().numpy()
return emb
def get_target_emb(self, data):
outputs = self.image_encoder(data).image_embeds
return outputs
def extract_video(
self,
video_dataset,
target_width: int = None,
target_height: int = None,
return_type: str = "numpy",
track_performance: bool = False,
input_rgb_order: str = "rgb",
) -> Union[np.ndarray, torch.Tensor]:
embs = []
sample_indexs = []
if track_performance:
performance = {}
with torch.no_grad():
for i, (batch, batch_index) in enumerate(video_dataset):
# TODO: 现阶段复用hugging face diffusers img2img pipeline中的抽取代码,
# 由于该代码目前只支持Image的预处理,故先将numpy.ndarray转换成PIL.Image
batch = [Image.fromarray(batch[b_i]) for b_i in range(len(batch))]
emb = self.extract_images(
data=batch,
target_width=target_width,
target_height=target_height,
return_type=return_type,
input_rgb_order=input_rgb_order,
)
embs.append(emb)
sample_indexs.extend(batch_index)
sample_indexs = np.array(sample_indexs)
if return_type == "numpy":
embs = np.concatenate(embs, axis=0)
elif return_type == "torch":
embs = torch.concat(embs)
sample_indexs = torch.from_numpy(sample_indexs)
return sample_indexs, embs
def extract(
self,
data: Union[str, List[str]],
data_type: Literal["image", "video"],
return_type: str = "numpy",
save_emb_path: str = None,
save_type: str = "h5py",
emb_key: str = "image_embeds",
sample_index_key: str = "sample_indexs",
insert_name_to_key: bool = False,
overwrite: bool = False,
input_rgb_order: str = "rgb",
save_sample_index: bool = True,
**kwargs,
) -> Union[np.ndarray, torch.tensor]:
if self.name is not None and insert_name_to_key:
emb_key = f"{self.name}_{emb_key}"
sample_index_key = f"{self.name}_{sample_index_key}"
if save_emb_path is not None and os.path.exists(save_emb_path):
with h5py.File(save_emb_path, "r") as f:
if not overwrite and emb_key in f and sample_index_key in f:
return None
if data_type == "image":
emb = self.extract_images(
data=data,
return_type=return_type,
input_rgb_order=input_rgb_order,
**kwargs,
)
if save_emb_path is None:
return emb
else:
raise NotImplementedError("save images emb")
elif data_type == "video":
sample_indexs, emb = self.extract_video(
video_dataset=data,
return_type=return_type,
input_rgb_order=input_rgb_order,
**kwargs,
)
if save_emb_path is None:
return sample_indexs, emb
else:
if save_type == "h5py":
self.save_video_emb_with_h5py(
save_emb_path=save_emb_path,
emb=emb,
emb_key=emb_key,
sample_indexs=sample_indexs,
sample_index_key=sample_index_key,
overwrite=overwrite,
save_sample_index=save_sample_index,
)
return sample_indexs, emb
else:
raise ValueError(f"only support save_type={save_type}")
@staticmethod
def save_images_emb_with_h5py(
save_emb_path: str,
emb: np.ndarray = None,
emb_key: str = "image_embeds",
) -> h5py.File:
save_value_with_h5py(save_emb_path, value=emb, key=emb_key)
@staticmethod
def save_video_emb_with_h5py(
save_emb_path: str,
emb: np.ndarray = None,
emb_key: str = "image_embeds",
sample_indexs: np.ndarray = None,
sample_index_key: str = "sample_indexs",
overwrite: bool = False,
save_sample_index: bool = True,
) -> h5py.File:
save_value_with_h5py(
save_emb_path,
value=emb,
key=emb_key,
overwrite=overwrite,
dtype=np.float16,
)
if save_sample_index:
save_value_with_h5py(
save_emb_path,
value=sample_indexs,
key=sample_index_key,
overwrite=overwrite,
dtype=np.uint32,
)
class ImageClipVisionFeatureExtractorV2(ImageClipVisionFeatureExtractor):
"""选择clip的 hidden_states[-2],一张图像的输出特征是M*D,如257*1280,
Args:
BaseFeatureExtractor (_type_): _description_
"""
def __init__(
self,
pretrained_model_name_or_path: str,
name: str = None,
device: str = "cpu",
dtype=torch.float32,
):
super().__init__(pretrained_model_name_or_path, name, device, dtype)
def get_target_emb(self, data):
outputs = self.image_encoder(data, output_hidden_states=True).hidden_states[-2]
return outputs
class ImageClipVisionFeatureExtractorV3(ImageClipVisionFeatureExtractor):
"""选择clip的 hidden_states[-2],一张图像的输出特征是M*D,如257*1280,
Args:
BaseFeatureExtractor (_type_): _description_
"""
def __init__(
self,
pretrained_model_name_or_path: str,
name: str = None,
device: str = "cpu",
dtype=torch.float32,
):
super().__init__(pretrained_model_name_or_path, name, device, dtype)
def get_target_emb(self, data):
outputs = self.image_encoder(data, output_hidden_states=True).last_hidden_state
return outputs
class ImageClipVisionFeatureExtractorV4(ImageClipVisionFeatureExtractor):
"""
参考 https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py#L114
Args:
BaseFeatureExtractor (_type_): _description_
"""
def __init__(
self,
pretrained_model_name_or_path: str,
name: str = None,
device: str = "cpu",
dtype=torch.float32,
):
super().__init__(pretrained_model_name_or_path, name, device, dtype)
def get_target_emb(self, data):
encoder_output = self.image_encoder(data, output_hidden_states=True)
embeds = self.image_encoder.vision_model.post_layernorm(
encoder_output.last_hidden_state
)
embeds = self.image_encoder.visual_projection(embeds)
embeds_pooled = embeds[:, 0:1]
embeds = embeds / torch.norm(embeds_pooled, dim=-1, keepdim=True)
return embeds
class OriginLastHiddenState2Poolout(nn.Module):
def __init__(
self,
hidden_size: int,
projection_dim: int,
layer_norm_eps: float,
):
super().__init__()
self.post_layernorm = nn.LayerNorm(hidden_size, eps=layer_norm_eps)
self.visual_projection = nn.Linear(hidden_size, projection_dim, bias=False)
def load_state_dict_from_pretrained(self, pretrained_model_name_or_path):
model_pretrained = torch.load(
os.path.join(pretrained_model_name_or_path, "pytorch_model.bin"),
map_location="cpu",
)
post_layernorm_params = {
k.replace("vision_model.post_layernorm.", ""): v
for k, v in model_pretrained.items()
if "vision_model.post_layernorm." in k
}
self.post_layernorm.load_state_dict(post_layernorm_params)
visual_projection_params = {
k.replace("visual_projection.", ""): v
for k, v in model_pretrained.items()
if "visual_projection." in k
}
self.visual_projection.load_state_dict(visual_projection_params)
@classmethod
def from_pretrained(
cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs
):
cfg_path = os.path.join(pretrained_model_name_or_path, "config.json")
with open(cfg_path, "r") as f:
config = json.load(f)
model = cls(
hidden_size=config["hidden_size"],
projection_dim=config["projection_dim"],
layer_norm_eps=config["layer_norm_eps"],
)
model.load_state_dict_from_pretrained(pretrained_model_name_or_path)
return model
def forward(self, data):
last_hidden_state = data
pooled_output = last_hidden_state[:, 0, :]
pooled_output = self.post_layernorm(pooled_output)
# image_embeds = self.visual_projection(pooled_output)
return pooled_output
class OriginLastHiddenState2ImageEmbd(OriginLastHiddenState2Poolout):
def __init__(self, hidden_size: int, projection_dim: int, layer_norm_eps: float):
super().__init__(hidden_size, projection_dim, layer_norm_eps)
def forward(self, data):
pooled_output = super().forward(data)
image_embeds = self.visual_projection(pooled_output)
return image_embeds
class VerstailSDLastHiddenState2ImageEmb(OriginLastHiddenState2ImageEmbd):
def __init__(self, hidden_size: int, projection_dim: int, layer_norm_eps: float):
super().__init__(hidden_size, projection_dim, layer_norm_eps)
def forward(self, data):
embeds = self.post_layernorm(data)
embeds = self.visual_projection(embeds)
embeds_pooled = embeds[:, 0:1]
embeds = embeds / torch.norm(embeds_pooled, dim=-1, keepdim=True)
return embeds
|